Molecular Biotechnology

, Volume 36, Issue 2, pp 90–101 | Cite as

A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis

  • Hiroshi Ishikawa
  • Yasushi Hoshino
  • Yutaka Motoki
  • Takuma Kawahara
  • Mika Kitajima
  • Madoka Kitami
  • Ayako Watanabe
  • Alejandra Bravo
  • Mario Soberon
  • Atsuko Honda
  • Katsuro Yaoi
  • Ryoichi Sato
Research

Abstract

Theoretically, the activity of AB-type toxin molecules such as the insecticidal toxin (Cry toxin) from B. thuringiensis, which have one active site and two binding site, is improved in parallel with the binding affinity to its receptor. In this experiment, we tried to devise a method for the directed evolution of Cry toxins to increase the binding affinity to the insect receptor. Using a commercial T7 phage-display system, we expressed Cry1Aa toxin on the phage surface as fusions with the capsid protein 10B. These recombinant phages bound to a cadherin-like protein that is one of the Cry1Aa toxin receptors in the model target insect Bombyx mori. The apparent affinity of Cry1Aa-expressing phage for the receptor was higher than that of Cry1Ab-expressing phage. Phages expressing Cry1Aa were isolated from a mixed suspension of phages expressing Cry1Ab and concentrated by up to 130,000-fold. Finally, random mutations were made in amino acid residues 369–375 in domain 2 of Cry1Aa toxin, the mutant toxins were expressed on phages, and the resulting phage library was screened with cadherin-like protein-coated beads. As a result, phages expressing abnormal or low-affinity mutant toxins were excluded, and phages with high-affinity mutant toxins were selected. These results indicate that a method combining T7 phage display with selection using cadherin-like protein-coated magnetic beads can be used to increase the activity of easily obtained, low-activity Cry toxins from bacteria.

Keywords

Bacillus thuringiensis Cry toxin Phage display Directed evolution Cadherin-like protein Bombyx mori 

References

  1. 1.
    Atsumi, S., Mizuno, E., Hara, H., Nakanishi, K., Kitami, M., Miura, N., Tabunoki, H., Watanabe, A., & Sato, R. (2005). Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin. Applied Environmental Microbiology, 71, 3966–3977.CrossRefGoogle Scholar
  2. 2.
    Boonserm, P., Davis, P., Ellar, D. J., & Li, J. (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. Journal of Molecular Biology, 348, 363–382.PubMedCrossRefGoogle Scholar
  3. 3.
    Bravo, A., Gomez, I., Conde, J., Munoz-Garay, C., Sanchez, J., Miranda, R., Zhuang, M., Gill, S. S., & Soberon, M. (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 1667, 38–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton, S. L., Ellar, D. J., Li, J., & Derbyshire, D. J. (1999). N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Journal of Biological Chemistry, 287, 1011–1022.Google Scholar
  5. 5.
    Cain, S. A., Williams, D. M., Harris, V., & Monk, P. N. (2001). Selection of novel ligands from a whole-molecule randomly mutated C5a library. Protein Engineering, 14, 189–193.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, X. J., Curtiss, A., Alcantara, E., & Dean, D. H. (1995). Mutations in domain I of Bacillus thuringiensis delta-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. Journal of Biological Chemistry, 270, 6412–6419.PubMedCrossRefGoogle Scholar
  7. 7.
    Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., & Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.PubMedGoogle Scholar
  8. 8.
    Gahan, L. J., Gould, F., & Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860.PubMedCrossRefGoogle Scholar
  9. 9.
    Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W., & English, L. (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallography D: Biological Crystallography, 57, 1101–1109.CrossRefGoogle Scholar
  10. 10.
    Gill, M., & Ellar, D. (2002). Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Molecular Biology, 11, 619–625.PubMedCrossRefGoogle Scholar
  11. 11.
    Gomez, I., Dean, D. H., Bravo, A., & Soberon, M. (2003). Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: Two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Biochemistry, 42, 10482–10489.PubMedCrossRefGoogle Scholar
  12. 12.
    Gomez, I., Miranda-Rios, J., Rudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., & Soberon, M. (2002). Hydropathic complementarity determines interaction of epitope (869)HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain II of Bacillus thuringiensis Cry1A toxins. Journal of Biological Chemistry, 277, 30137–30143.PubMedCrossRefGoogle Scholar
  13. 13.
    Gomez, I., Oltean, D. I., Gill, S. S., Bravo, A., & Soberon, M. (2001). Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. Journal of Biological Chemistry, 276, 28906–28912.PubMedCrossRefGoogle Scholar
  14. 14.
    Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R., & Cygler, M. (1995). Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. Journal of Molecular Biology, 254, 447–464.PubMedCrossRefGoogle Scholar
  15. 15.
    Hara, H., Atsumi, S., Yaoi, K., Nakanishi, K., Higurashi, S., Miura, N., Tabunoki, H., & Sato, R. (2003). A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. FEBS Letters, 538, 29–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Harvey, W. R., & Wolfersberger, M. G. (1979). Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. Journal of Experimental Biology, 83, 293–304.PubMedGoogle Scholar
  17. 17.
    Hofmann, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., & Van Mellaert, H. (1988). Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proceedings of the National Academy of Sciences of the USA, 85, 7844–7848.PubMedCrossRefGoogle Scholar
  18. 18.
    Hofte, H., & Whitely, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Reviews, 53, 242–255.Google Scholar
  19. 19.
    Hossain, D. M., Shitomi, Y., Moriyama, K., Higuchi, M., Hayakawa, T., Mitsui, T., Sato, R., & Hori, H. (2004). Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Applied Environmental Microbiology, 70, 4604–4612.CrossRefGoogle Scholar
  20. 20.
    Hua, G., Tsukamoto, K., & Ikezawa, H. (1998). Cloning and sequence analysis of the aminopeptidase N isozyme (APN2) from Bombyx mori midgut. Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology, 121, 213–222.CrossRefGoogle Scholar
  21. 21.
    Jenkins, J. L., Lee, M. K., Sangadala, S., Adang, M. J., & Dean, D. H. (1999). Binding of Bacillus thuringiensis Cry1Ac toxin to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity. FEBS Letters, 462, 373–376.PubMedCrossRefGoogle Scholar
  22. 22.
    Kasman, L. M., Lukowiak, A. A., Garczynski, S. F., McNall, R. J., Youngman, P., & Adang, M. J. (1998). Phage display of a biologically active Bacillus thuringiensis toxin. Applied Environmental Microbiology, 64, 2995–3003.Google Scholar
  23. 23.
    Li, J. D., Carroll, J., & Ellar, D. J. (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature, 353, 815–821.PubMedCrossRefGoogle Scholar
  24. 24.
    Lowman, H. B., & Wells, J. A. (1993). Affinity maturation of human growth hormone by monovalent phage display. Journal of Molecular Biology, 234, 564–578.PubMedCrossRefGoogle Scholar
  25. 25.
    Lu, H., Rajamohan, F., & Dean, D. H. (1994). Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori. Journal of Bacteriology, 176, 5554–5559.PubMedGoogle Scholar
  26. 26.
    Luo, K., Sangadala, S., Masson, L., Mazza, A., Brousseau, R., & Adang, M. J. (1997). The heliothis virescens 170 kDa aminopeptidase functions as “receptor A” by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. Insect Biochemistry and Molecular Biology, 27, 735–743.PubMedCrossRefGoogle Scholar
  27. 27.
    Luthy, P., & Ebersold, H. R. (1981). The entomocidal toxins of Bacillus thuringiensis. In E. Davidson (Ed.), Pathogenesis of invertebrate microbial diseases (pp. 235–268). Totowa: Allangeld Osumun.Google Scholar
  28. 28.
    Marzari, R., Edomi, P., Bhatnagar, R. K., Ahmad, S., Selvapandiyan, A., & Bradbury, A. (1997). Phage display of Bacillus thuringiensis CryIA(a) insecticidal toxin. FEBS Letters, 411, 27–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R., & Schwartz, J. L. (1999). Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. Journal of Biological Chemistry, 274, 31996–32000.PubMedCrossRefGoogle Scholar
  30. 30.
    Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers-Kirk, C., Higginson, D., Holley, D., Gahan, L. J., Heckel, D. G., Carriere, Y., Dennehy, T. J., Brown, J. K., & Tabashnik, B. E. (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the USA, 100, 5004–5009.PubMedCrossRefGoogle Scholar
  31. 31.
    Morse, R. J., Yamamoto, T., & Stroud, R. M. (2001). Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure, 9, 409–417.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagamatsu, Y., Koike, T., Sasaki, K., Yoshimoto, A., & Furukawa, Y. (1999). The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Letters, 460, 385–390.PubMedCrossRefGoogle Scholar
  33. 33.
    Nagamatsu, Y., Toda, S., Koike, T., Miyoshi, Y., Shigematsu, S., & Kogure, M. (1998). Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Bioscience Biotechnology, and Biochemistry, 62, 727–734.CrossRefGoogle Scholar
  34. 34.
    Nakanishi, K., Yaoi, K., Nagino, Y., Hara, H., Kitami, M., Atsumi, S., Miura, N., & Sato, R. (2002). Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella ; their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Letters, 519, 215–220.PubMedCrossRefGoogle Scholar
  35. 35.
    Oeda, K., Oshie, K., Shimizu, M., Nakamura, K., Yamamoto, H., Nakayama, I., & Ohkawa, H. (1987). Nucleotide sequence of the insecticidal protein gene of Bacillus thuringiensis strain aizawai IPL7 and its high-level expression in Escherichia coli. Gene, 53, 113–119.PubMedCrossRefGoogle Scholar
  36. 36.
    Pacheco, S., Gomez, I., Sato, R., Bravo, A., & Soberon, M. (2006). Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. Journal Invertebrate Pathology, 92, 45–49.CrossRefGoogle Scholar
  37. 37.
    Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P., & Bhatnagar, R. K. (2002). Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. Journal of Biological Chemistry, 277, 46849–46851.PubMedCrossRefGoogle Scholar
  38. 38.
    Rajamohan, F., Hussain, S. R., Cotrill, J. A., Gould, F., & Dean, D. H. (1996). Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midgets. Journal of Biological Chemistry, 271, 25220–25226.PubMedCrossRefGoogle Scholar
  39. 39.
    Russel, M. (1991). Filamentous phage assembly. Molecular Microbiology, 5, 1607–1613.PubMedCrossRefGoogle Scholar
  40. 40.
    Sambrook, J., & Russell, D. W. (2000). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  41. 41.
    Sangadala, S., Walters, F. S., English, L. H., & Adang, M. J. (1994). A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. Journal of Biological Chemistry, 269, 10088–10092.PubMedGoogle Scholar
  42. 42.
    Schier, R., McCall, A., Adams, G. P., Marshall, K. W., Merritt, H., Yim, M., Crawford, R. S., Weiner, L. M., Marks, C., & Marks, J. D. (1996). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. Journal of Molecular Biology, 263, 551–567.PubMedCrossRefGoogle Scholar
  43. 43.
    Schnepf, H. E., Wong, H. C., & Whiteley, H. R. (1985). The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. Journal of Biological Chemistry, 260, 6264–6272.PubMedGoogle Scholar
  44. 44.
    Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R., & Masson, L. (1997). Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Letters, 410, 397–402.PubMedCrossRefGoogle Scholar
  45. 45.
    Scott, J. K., & Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science, 249, 386–390.PubMedCrossRefGoogle Scholar
  46. 46.
    Smedley, D. P., & Ellar, D. J. (1996). Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology, 142, 1617–1624.Google Scholar
  47. 47.
    Thompson, J., Pope, T., Tung, J. S., Chan, C., Hollis, G., Mark, G., & Johnson, K. S. (1996). Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: Use of phage display to improve affinity and broaden strain reactivity. Journal of Molecular Biology, 256, 77–88.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Rie, J., Jansens, S., Hofte, H., Degheele, D., & Van Mellaert, H. (1990). Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Applied and Environmental Microbiology, 56, 1378–1385.PubMedGoogle Scholar
  49. 49.
    Vilchez, S., Jacoby, J., & Ellar, D. J. (2004). Display of biologically functional insecticidal toxin on the surface of lambda phage. Applied Environmental Microbiology, 70, 6587–6594.CrossRefGoogle Scholar
  50. 50.
    Watanabe, A., Miyazawa, S., Kitami, M., Tabunoki, H., Ueda, K., & Sato, R. (2006). Characterization of a novel C-type lectin, BmMBP, from the Bombyx mori hemolymph: Mechanism of wide-range microorganism recognition and role in immunity. Journal of Immunology, 177, 4594–4604.Google Scholar
  51. 51.
    Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., & Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the USA, 100, 2760–2765.PubMedCrossRefGoogle Scholar
  52. 52.
    Xie, R., Zhuang, M., Ross, L. S., Gomez, I., Oltean, D. I., Bravo, A., Soberon, M., & Gill, S. S. (2005). Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Journal of Biological Chemistry, 280, 8416–8425.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied Environmental Microbiology, 71, 948–954.CrossRefGoogle Scholar
  54. 54.
    Yaoi, K., Kadotani, T., Kuwana, H., Shinkawa, A., Takahashi, T., Iwahana, H., & Sato, R. (1997). Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. European Journal of Biochemistry, 246, 652–657.PubMedCrossRefGoogle Scholar
  55. 55.
    Yaoi, K., Nakanishi, K., Kadotani, T., Imamura, M., Koizumi, N., Iwahana, H., & Sato, R. (1999). cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochimica et Biophysica Acta, 1444, 131–137.PubMedGoogle Scholar
  56. 56.
    Yoshida, M. (1992). Design of experimentas for animal husbandry (6th ed.). Tokyo: Yokendo.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hiroshi Ishikawa
    • 1
  • Yasushi Hoshino
    • 1
  • Yutaka Motoki
    • 1
  • Takuma Kawahara
    • 1
  • Mika Kitajima
    • 1
  • Madoka Kitami
    • 1
  • Ayako Watanabe
    • 1
  • Alejandra Bravo
    • 2
  • Mario Soberon
    • 2
  • Atsuko Honda
    • 1
  • Katsuro Yaoi
    • 3
  • Ryoichi Sato
    • 1
  1. 1.Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Instituto de BiotecnologiaUniversidad Nacional Autonoma de MexicoCuernavacaMexico
  3. 3.Institute for Biological Resources and FunctionsNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations