Skip to main content

Advertisement

Log in

Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common cancer worldwide. The development of tumor drug resistance is observed in the treatment of CRC. Combinations of anticancer agents are attracting considerable interest in order to overcome drug resistance in CRC. This study aims to investigate the effect of resveratrol and BIBR1532, either alone or in combination, on the cell viability as well as on expression of long non-coding RNAs (LncRNAs) for HT-29 colon adenocarcinoma cells. The cytotoxic effects of resveratrol and BIBR1532 on HT-29 cells were determined using WST-1 test. Flow cytometry was used to determine apoptotic cell death after treatments. Real-Time PCR was used to identify expression of LncRNAs after treatments. LncExpDB and GEPIA2 were used to evaluate expression profiles of LncRNAs, whose expression levels were decreased in HT-29 cells after treatments, in normal tissues and colon adenocarcinoma tumors. IC50 concentrations of BIBR1532 and resveratrol were found to be 50.81 μM at 48 h and 86.23 μM at 72 h, respectively. Combination index value was 1.07617. BIBR1532, resveratrol, or their combination reduced the cell viability of HT-29 cells. CCAT1, CRNDE, HOTAIR, PCAT1, PVT1, SNHG16 were down-regulated after treatments. In silico analysis revealed that LncRNAs whose expression levels were decreased after treatments were associated with CRC. Resveratrol, BIBR1532, or their combination may have anti-proliferative effect on colorectal cancer cells through repressing expression of LncRNAs that are involved in progression of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18010197.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.

    PubMed  Google Scholar 

  3. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sveen A, Loes IM, Alagaratnam S, Nilsen G, Holand M, Lingjaerde OC, et al. Intra-patient inter-metastatic genetic heterogeneity in colorectal cancer as a key determinant of survival after curative liver resection. PLoS Genet. 2016;12(7):e1006225.

    PubMed  PubMed Central  Google Scholar 

  5. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43.

    PubMed  Google Scholar 

  6. Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.

    CAS  PubMed  Google Scholar 

  7. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    CAS  PubMed  Google Scholar 

  8. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, et al. The role of resveratrol in cancer therapy. Int J Mol Sci. 2017;18(12):2589.

    PubMed Central  Google Scholar 

  9. Buhrmann C, Yazdi M, Popper B, Shayan P, Goel A, Aggarwal BB, et al. Resveratrol chemosensitizes TNF-beta-induced survival of 5-FU-treated colorectal cancer cells. Nutrients. 2018;10(7):888.

    PubMed Central  Google Scholar 

  10. Kaminski BM, Weigert A, Scherzberg MC, Ley S, Gilbert B, Brecht K, et al. Resveratrol-induced potentiation of the antitumor effects of oxaliplatin is accompanied by an altered cytokine profile of human monocyte-derived macrophages. Apoptosis. 2014;19(7):1136–47.

    CAS  PubMed  Google Scholar 

  11. Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int. 2019;19:180.

    PubMed  PubMed Central  Google Scholar 

  12. Ayiomamitis GD, Notas G, Zaravinos A, Zizi-Sermpetzoglou A, Georgiadou M, Sfakianaki O, et al. Differences in telomerase activity between colon and rectal cancer. Can J Surg. 2014;57(3):199–208.

    PubMed  PubMed Central  Google Scholar 

  13. Fuggetta MP, Lanzilli G, Tricarico M, Cottarelli A, Falchetti R, Ravagnan G, et al. Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. J Exp Clin Cancer Res. 2006;25(2):189–93.

    CAS  PubMed  Google Scholar 

  14. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.

    CAS  PubMed  Google Scholar 

  15. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91.

    CAS  PubMed  Google Scholar 

  16. Fernández-Marcelo T, Sánchez-Pernaute A, Pascua I, De Juan C, Head J, Torres-García AJ, et al. Clinical relevance of telomere status and telomerase activity in colorectal cancer. PLoS ONE. 2016;11(2):e0149626.

    PubMed  PubMed Central  Google Scholar 

  17. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 2001;20(24):6958–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lavanya C, Venkataswamy MM, Sibin MK, Srinivas Bharath MM, Chetan GK. Down regulation of human telomerase reverse transcriptase (hTERT) expression by BIBR1532 in human glioblastoma LN18 cells. Cytotechnology. 2018;70(4):1143–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dogan F, Ozates NP, Bagca BG, Abbaszadeh Z, Sogutlu F, Gasimli R, et al. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27089.

    Article  PubMed  Google Scholar 

  20. Kong W, Lv N, Wysham WZ, Roque DR, Zhang T, Jiao S, et al. Knockdown of hTERT and treatment with BIBR1532 inhibit cell proliferation and invasion in endometrial cancer cells. J Cancer. 2015;6(12):1337–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown T, Sigurdson E, Rogatko A, Broccoli D. Telomerase inhibition using azidothymidine in the HT-29 colon cancer cell line. Ann Surg Oncol. 2003;10(8):910–5.

    PubMed  Google Scholar 

  22. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–51.

    CAS  PubMed  Google Scholar 

  23. Yang Q, Xu E, Dai J, Liu B, Han Z, Wu J, et al. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol. 2015;285(2):79–88.

    CAS  PubMed  Google Scholar 

  24. Al Aameri RFH, Sheth S, Alanisi EMA, Borse V, Mukherjea D, Rybak LP, et al. Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: reversal by resveratrol. PLoS ONE. 2017;12(5):e0177198.

    PubMed  PubMed Central  Google Scholar 

  25. Li Z, Liu L, Jiang S, Li Q, Feng C, Du Q, et al. LncExpDB: an expression database of human long non-coding RNAs. Nucleic Acids Res. 2021;49(D1):D962–8.

    CAS  PubMed  Google Scholar 

  26. Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.

    CAS  PubMed  Google Scholar 

  27. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    CAS  Google Scholar 

  29. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, et al. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86(3):232–50.

    PubMed  Google Scholar 

  32. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355(9209):1041–7.

    CAS  PubMed  Google Scholar 

  33. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834–48.

    PubMed  PubMed Central  Google Scholar 

  34. Zhai XX, Ding JC, Tang ZM, Li JG, Li YC, Yan YH, et al. Effects of resveratrol on the proliferation, apoptosis and telomerase ability of human A431 epidermoid carcinoma cells. Oncol Lett. 2016;11(5):3015–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahyar-Roemer M, Kohler H, Roemer K. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells. BMC Cancer. 2002;2:27. https://doi.org/10.1186/1471-2407-2-27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Santandreu FM, Valle A, Oliver J, Roca P. Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol Biochem. 2011;28(2):219–28.

    CAS  PubMed  Google Scholar 

  37. Pohland T, Wagner S, Mahyar-Roemer M, Roemer K. Bax and Bak are the critical complementary effectors of colorectal cancer cell apoptosis by chemopreventive resveratrol. Anticancer Drugs. 2006;17(4):471–8.

    PubMed  Google Scholar 

  38. Duessel S, Heuertz RM, Ezekiel UR. Growth inhibition of human colon cancer cells by plant compounds. Clin Lab Sci. 2008;21(3):151–7.

    PubMed  Google Scholar 

  39. Juan ME, Wenzel U, Daniel H, Planas JM. Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J Agric Food Chem. 2008;56(12):4813–8.

    CAS  PubMed  Google Scholar 

  40. Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia J, et al. Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/Sphase cell cycle arrest and apoptosis through caspase/cyclinCDK pathways. Mol Med Rep. 2014;10(4):1697–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C. Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis. 2007;28(5):922–31.

    CAS  PubMed  Google Scholar 

  42. Chung SS, Dutta P, Austin D, Wang P, Awad A, Vadgama JV. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget. 2018;9(68):32943–57.

    PubMed  PubMed Central  Google Scholar 

  43. Garcia-Aranda C, de Juan C, Diaz-Lopez A, Sanchez-Pernaute A, Torres AJ, Diaz-Rubio E, et al. Correlations of telomere length, telomerase activity, and telomeric-repeat binding factor 1 expression in colorectal carcinoma. Cancer. 2006;106(3):541–51.

    CAS  PubMed  Google Scholar 

  44. Fernandez-Marcelo T, Sanchez-Pernaute A, Pascua I, De Juan C, Head J, Torres-Garcia AJ, et al. Clinical relevance of telomere status and telomerase activity in colorectal cancer. PLoS ONE. 2016;11(2):e0149626.

    PubMed  PubMed Central  Google Scholar 

  45. Ghori, Usselmann, Odogwu, Fraser, Morris. Telomerase inhibition as a potential new therapy for colorectal cancer. Colorectal Dis. 2000; 2 (2): 106–112.

  46. de Souza NP, Alves G, Fiedler W. Telomerase inhibition by an siRNA directed against hTERT leads to telomere attrition in HT29 cells. Oncol Rep. 2006;16(2):423–8.

    Google Scholar 

  47. Wong SC, Yu H, Moochhala SM, So JB. Antisense telomerase induced cell growth inhibition, cell cycle arrest and telomerase activity down-regulation in gastric and colon cancer cells. Anticancer Res. 2003;23(1A):465–9.

    CAS  PubMed  Google Scholar 

  48. Kirkegaard T, Jaattela M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009;1793(4):746–54.

    CAS  PubMed  Google Scholar 

  49. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer. 2012;130(7):1598–606.

    CAS  PubMed  Google Scholar 

  50. Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer. 2011;2(8):829–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6.

    CAS  PubMed  Google Scholar 

  52. Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013;30(2):588.

    PubMed  Google Scholar 

  53. Fan H, Zhu JH, Yao XQ. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer. Int J Biol Markers. 2018;33(4):415–22.

    CAS  PubMed  Google Scholar 

  54. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. 2019. Biosci Rep. https://doi.org/10.1042/BSR20182498.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen S, Zhang C, Feng M. Prognostic value of LncRNA HOTAIR in colorectal cancer: a meta-analysis. Open Med (Wars). 2020;15:76–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gu C, Zou S, He C, Zhou J, Qu R, Wang Q, et al. Long non-coding RNA CCAT1 promotes colorectal cancer cell migration, invasiveness and viability by upregulating VEGF via negative modulation of microRNA-218. Exp Ther Med. 2020;19(4):2543–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 2014;110(1):164–71.

    CAS  PubMed  Google Scholar 

  58. Qiao L, Liu X, Tang Y, Zhao Z, Zhang J, Feng Y. Down regulation of the long non-coding RNA PCAT-1 induced growth arrest and apoptosis of colorectal cancer cells. Life Sci. 2017;188:37–44.

    CAS  PubMed  Google Scholar 

  59. Chen Z, Yu C, Zhan L, Pan Y, Chen L, Sun C. LncRNA CRNDE promotes hepatic carcinoma cell proliferation, migration and invasion by suppressing miR-384. Am J Cancer Res. 2016;6(10):2299–309.

    PubMed  PubMed Central  Google Scholar 

  60. Lin K, Jiang H, Zhang LL, Jiang Y, Yang YX, Qiu GD, et al. Down-regulated LncRNA-HOTAIR suppressed colorectal cancer cell proliferation, invasion, and migration by mediating p21. Dig Dis Sci. 2018;63(9):2320–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was sponsored by Ege University Research Fund, Project No. TYL-2019-20515 (to Cigir Biray Avci).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SC, BGB, HOC, NPO, CG; Methodology: SC, BGB, HOC, NPO; Formal analysis and investigation: SC, CG; Writing-original draft preparation: SC, HOC; Writing-review and editing: CBA; Supervision: CBA.

Corresponding author

Correspondence to Cigir Biray Avci.

Ethics declarations

Conflict of interest

The authors declare that they have no any conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent

Not applicable.

Research involving human and animal rights

This study does not contain any studies with human participants or animals performed by any of authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesmeli, S., Goker Bagca, B., Caglar, H.O. et al. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs. Med Oncol 39, 12 (2022). https://doi.org/10.1007/s12032-021-01611-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01611-w

Keywords

Navigation