Medical Oncology

, 36:55 | Cite as

Influence of ABCB1 polymorphisms on the pharmacokinetics and toxicity of lenalidomide in patients with multiple myeloma

  • Takahiro KobayashiEmail author
  • Masatomo Miura
  • Maiko Abumiya
  • Yumiko Akamine
  • Fumiko Ito
  • Naoto Takahashi
Original Paper


Individual diversity in plasma concentrations of lenalidomide occurs despite dosage modifications based on creatinine clearance (CCr), which can lead to unexpected toxicity. We have previously identified a cutoff value of area under the concentration–time curve (AUC0–24) for lenalidomide to avoid severe toxicity. Here, we investigated the association between ABCB1 polymorphisms and pharmacokinetics of lenalidomide in patients with multiple myeloma (MM) treated with lenalidomide and dexamethasone. Plasma concentrations of lenalidomide were analyzed using liquid chromatography–tandem mass spectrometry. Genotyping for ABCB1 1236C>T, 2677G>A/T, and 3435C>T polymorphisms was performed, and the effects of ABCB1 polymorphisms on AUC0–24 for lenalidomide were compared in 36 patients with MM who were administered lenalidomide according to the drug label based on CCr. Genotyping analysis showed that although there were no differences in AUC0–24 in 1236C>T and 2677G>A/T polymorphisms. AUC0–24 was significantly higher in patients with the T allele of 3435C>T (n = 15) than in those without (n = 21) (median 6324.6 ng h/mL vs. 2857.4 ng h/mL, p = 0.028). The AUC0–24 value exceeded the aforementioned cutoff value in 95% of the patients with the T allele of 3435C>T but in 60% with C/C genotype (p = 0.013). Multivariate logistic analysis confirmed the significance of T allele of ABCB1 3435C>T as a factor due to which the AUC0–24 cutoff value was exceeded (hazard ratio of 15.0, p = 0.019). We show that lenalidomide pharmacokinetics is influenced by the ABCB1 3435C>T polymorphism, which could be useful to individualize dosage design and reduce unexpected toxicity.


Multiple myeloma Lenalidomide Pharmacokinetics P-glycoprotein ABCB1 polymorphisms 



This work was supported by Japan Society for the Promotion of Science (KAKENHI Grant Number 26461414 for Scientific Research to N.T.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the Ethics Committee of Akita University School of Medicine (No. 905) and with the 1964 Helsinki Declaration.

Supplementary material

12032_2019_1280_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)
12032_2019_1280_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)


  1. 1.
    Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res. 2016;22:5419–27.CrossRefGoogle Scholar
  2. 2.
    Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372:142–52.CrossRefGoogle Scholar
  3. 3.
    Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:1319–31.CrossRefGoogle Scholar
  4. 4.
    Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621–31.CrossRefGoogle Scholar
  5. 5.
    Roussel M, Lauwers-Cances V, Robillard N, Hulin C, Leleu X, Benboubker L, et al. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myélome. J Clin Oncol. 2014;32:2712–7.CrossRefGoogle Scholar
  6. 6.
    Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374:1621–34.CrossRefGoogle Scholar
  7. 7.
    Dimopoulos MA, Palumbo A, Attal M, Beksaç M, Davies FE, Delforge M, et al. Optimizing the use of lenalidomide in relapsed or refractory multiple myeloma: consensus statement. Leukemia. 2011;25:749–60.CrossRefGoogle Scholar
  8. 8.
    Chen N, Zhou S, Palmisano M. Clinical pharmacokinetics and pharmacodynamics of lenalidomide. Clin Pharmacokinet. 2017;56:139–52.CrossRefGoogle Scholar
  9. 9.
    Kobayashi T, Miura M, Niioka T, Abumiya M, Ito F, Kobayashi I, et al. Phase II clinical trial of lenalidomide and dexamethasone therapy in Japanese elderly patients with newly diagnosed multiple myeloma to determine optimal plasma concentration of lenalidomide. Ther Drug Monit. 2018;40:301–9.CrossRefGoogle Scholar
  10. 10.
    Takahashi N, Miura M, Kameoka Y, Abumiya M, Sawada K. Drug interaction between lenalidomide and itraconazole. Am J Hematol. 2012;87:338–9.CrossRefGoogle Scholar
  11. 11.
    Kobayashi T, Miura M, Abumiya M, Niioka T, Kanno S, Takahashi N. The potential role of clarithromycin addition to lenalidomide and dexamethasone therapy (BiRd) in multiple myeloma. Ann Hematol. 2018;97:1097–9.CrossRefGoogle Scholar
  12. 12.
    Shida S, Takahashi N, Miura M, Niioka T, Matsumoto M, Hagihara M, et al. A limited sampling model to estimate exposure to lenalidomide in multiple myeloma patients. Ther Drug Monit. 2014;36:505–9.CrossRefGoogle Scholar
  13. 13.
    Wu L, Xu X, Shen J, Xie H, Yu S, Liang T, et al. MDR1 gene polymorphisms and risk of recurrence in patients with hepatocellular carcinoma after liver transplantation. J Surg Oncol. 2007;96:62–8.CrossRefGoogle Scholar
  14. 14.
    Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001;69:169–74.CrossRefGoogle Scholar
  15. 15.
    Abumiya M, Mita A, Takahashi S, Yoshioka T, Kameoka Y, Takahashi N, et al. Effects of polymorphisms in NR1I2, CYP3A4, and ABC transporters on the steady-state plasma trough concentrations of bosutinib in Japanese patient with chronic myeloid leukemia. Med Oncol Northwood Lond Engl. 2018;35:90.CrossRefGoogle Scholar
  16. 16.
    Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefGoogle Scholar
  17. 17.
    Cohen J. A power primer. Psychol Bull. 1992;112:155–9.CrossRefGoogle Scholar
  18. 18.
    Chen N, Lau H, Kong L, Kumar G, Zeldis JB, Knight R, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol. 2007;47:1466–75.CrossRefGoogle Scholar
  19. 19.
    Staud F, Ceckova M, Micuda S, Pavek P. Expression and function of p-glycoprotein in normal tissues: effect on pharmacokinetics. Methods Mol Biol Clifton NJ. 2010;596:199–222.CrossRefGoogle Scholar
  20. 20.
    Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.CrossRefGoogle Scholar
  21. 21.
    Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104:147–53.CrossRefGoogle Scholar
  22. 22.
    Johne A, Köpke K, Gerloff T, Mai I, Rietbrock S, Meisel C, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther. 2002;72:584–94.CrossRefGoogle Scholar
  23. 23.
    Verstuyft C, Schwab M, Schaeffeler E, Kerb R, Brinkmann U, Jaillon P, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol. 2003;58:809–12.CrossRefGoogle Scholar
  24. 24.
    Sinués B, Vicente J, Fanlo A, Mayayo-Sinués E, González-Andrade F, Sánchez-Q D, et al. CYP3A5*3, CYP3A4*1B and MDR1 C3435T genotype distributions in Ecuadorians. Dis Markers. 2008;24:325–31.CrossRefGoogle Scholar
  25. 25.
    Chen N, Weiss D, Reyes J, Liu L, Kasserra C, Wang X, et al. No clinically significant drug interactions between lenalidomide and P-glycoprotein substrates and inhibitors: results from controlled phase I studies in healthy volunteers. Cancer Chemother Pharmacol. 2014;73:1031–9.CrossRefGoogle Scholar
  26. 26.
    Hofmeister CC, Yang X, Pichiorri F, Chen P, Rozewski DM, Johnson AJ, et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide–CCI-779 interaction via P-glycoprotein. J Clin Oncol. 2011;29:3427–34.CrossRefGoogle Scholar
  27. 27.
    Tong Z, Yerramilli U, Surapaneni S, Kumar G. The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: lack of potential for drug–drug interactions. Cancer Chemother Pharmacol. 2014;73:869–74.CrossRefGoogle Scholar
  28. 28.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487–91.CrossRefGoogle Scholar
  29. 29.
    Jakobsen Falk I, Lund J, Gréen H, Gruber A, Alici E, Lauri B, et al. Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial. Cancer Chemother Pharmacol. 2018;81:183–93.CrossRefGoogle Scholar
  30. 30.
    Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371:906–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkita CityJapan
  2. 2.Department of PharmacyAkita University HospitalAkitaJapan

Personalised recommendations