Advertisement

Medical Oncology

, 36:43 | Cite as

In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer

  • Meghna M. Baruah
  • Neeti SharmaEmail author
Original Paper
  • 105 Downloads

Abstract

Accumulating evidence have suggested that some microRNAs are aberrantly expressed in prostate cancer. In our previous work, we had identified a panel of four differentially expressed microRNAs in prostate cancer. In the present study, we have investigated common molecular targets of this panel of miRNAs (DEMs) and key hub genes that can serve as potential candidate biomarkers in the pathogenesis and progression of prostate cancer. A joint bioinformatics approach was employed to identify differentially expressed genes (DEGs) in prostate cancer. Gene enrichment analysis followed by the protein–protein interaction (PPI) network construction and selection of hub genes was further performed using String and Cytoscape, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the identified hub genes was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool. In total, 496 genes were identified to be common targets of DEMs in prostate cancer and 13 key hub genes were identified from three modules of the PPI network of the DEGs. Further top five genes viz Rhoa, PI3KCA, CDC42, MAPK3, TP53 were used for Enrichment analysis which revealed their association with vital cellular and functional pathways in prostate cancer indicating their potential as candidate biomarkers in prostate cancer.

Keywords

Prostate cancer microRNA Differentially expressed genes Protein–protein interaction network Hub genes Bioinformatics analysis 

Notes

Acknowledgements

This work was supported by Grants from Symbiosis Centre for Research and Innovation (SCRI) and Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India. Ms. Meghna M. Baruah receive Senior Research Fellowship from Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Lavale, Pune, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12032_2019_1268_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.Google Scholar
  2. 2.
    Velonas V, Woo H, Remedios C, Assinder S. Current status of biomarkers for prostate cancer. Int J Mol Sci. 2013;14(6):11034–60.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Semjonow A, Brandt B, Oberpenning F, Roth S, Hertle L. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate. 1996;29(S7):3–16.Google Scholar
  4. 4.
    Filella X, Foj L, Augé JM, Molina R, Alcover J. Clinical utility of % p2PSA and prostate health index in the detection of prostate cancer. Clin Chem Lab Med (CCLM). 2014;52(9):1347–55.Google Scholar
  5. 5.
    Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Crowley JJ. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N Eng. J Med. 2004;350(22):2239–46.Google Scholar
  6. 6.
    Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BBA Mol Cell Res. 2010;1803(11):1231–43.Google Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rothschild SI. MicroRNA therapies in cancer. Mol Cell Ther. 2014;2(1):7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralGoogle Scholar
  10. 10.
    MacFarlane LA, Murphy RP. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–61.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Singh AN, Sharma N. In silico Meta-Analysis of Circulatory microRNAs in Prostate Cancer. J Anal Oncol. 2017;6(2):107–16.Google Scholar
  12. 12.
    Kim YK. Extracellular microRNAs as biomarkers in human disease. Chonnam Med J. 2015;51(2):51–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145.PubMedGoogle Scholar
  15. 15.
    Sharma N, Baruah MM. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol. 2018.  https://doi.org/10.1007/s12094-018-1910-8.PubMedGoogle Scholar
  16. 16.
    Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2014;43(D1):D146–52.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Tsai TR. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2015;44(D1):D239–47.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;45:D362–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2.Google Scholar
  22. 22.
    Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):S11.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44.Google Scholar
  24. 24.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa MKEGG. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2009;38(suppl_1):D355–60.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nogales-Cadenas R, Carmona-Saez P, Vazquez M, Vicente C, Yang X, Tirado F, Pascual-Montano A. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 2009;37(suppl_2):W317–22.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2016;45(D1):D183–9.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Patil N, Gaitonde K. Clinical perspective of prostate cancer. Top Magn Reson Imaging. 2016;25(3):103–8.PubMedGoogle Scholar
  28. 28.
    Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gilbert-Ross M, Marcus AI, Zhou W. RhoA, a novel tumor suppressor or oncogene as a therapeutic target. Genes Dis. 2015;2(1):2.PubMedGoogle Scholar
  30. 30.
    Orgaz JL, Herraiz C, Sanz-Moreno V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases. 2014;5(4):e29019.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hall A. Rho family gtpases. Biochem Soc Trans. 2012;40(6):1378–82.PubMedGoogle Scholar
  32. 32.
    Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedGoogle Scholar
  33. 33.
    Dopeso H, Rodrigues P, Bilic J, Bazzocco S, Cartón-García F, Macaya I, Martínez-Barriocanal Á. Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer. 2018;118(1):106.PubMedGoogle Scholar
  34. 34.
    Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kwon HY. RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 2016;48(2):714–22.PubMedGoogle Scholar
  35. 35.
    Song L, Guo Y, Xu B. Expressions of Ras Homolog Gene family, member A (RhoA) and cyclooxygenase-2 (COX-2) proteins in early gastric cancer and their role in the development of gastric cancer. Med Sci Monit. 2017;23:2979–84.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW, Lee JY, Park WS. Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer. 2017;20(2):274–85.PubMedGoogle Scholar
  37. 37.
    Li H, Wang Z, Zhang W, Qian K, Xu W, Zhang S. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett. 2016;370(1):39–55.PubMedGoogle Scholar
  38. 38.
    Liu K, Li X, Wang J, Wang Y, Dong H, Li J. Genetic variants in RhoA and ROCK1 genes are associated with the development, progression and prognosis of prostate cancer. Oncotarget. 2017;8(12):19298.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jason SL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60.Google Scholar
  40. 40.
    Moynahan ME, Chen D, He W, Sung P, Samoila A, You D, Baselga J. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2− advanced breast cancer: results from BOLERO-2. Br J Cancer. 2017;116(6):726–30.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bonetti LR, Barresi V, Bettelli S, Caprera C, Manfredini S, Maiorana A. Analysis of KRAS, NRAS, PIK3CA, and BRAF mutational profile in poorly differentiated clusters of KRAS-mutated colon cancer. Hum Pathol. 2017;62:91–8.Google Scholar
  42. 42.
    Green S, Trejo CL, McMahon M. PIK3CA(H1047R) accelerates and enhances KRAS(G12D)-driven lung tumorigenesis. Cancer Res. 2015;75(24):5378–91.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14(5):381–95.PubMedGoogle Scholar
  44. 44.
    Zhang S, Cai J, Xie W, Luo H, Yang F. miR 202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp Ther Med. 2018;16(2):1499–504.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Cullinane C. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discov. 2018;8(6):764–79.PubMedGoogle Scholar
  46. 46.
    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.PubMedGoogle Scholar
  47. 47.
    Kandioler D, Mittlböck M, Kappel S, Puhalla H, Herbst F, Langner C, Hofbauer F. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine. 2015;2(8):825–30.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Scheel A, Bellile E, McHugh JB, Walline HM, Prince ME, Urba S, Bradford C. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer. Laryngoscope. 2016;126(9):E292–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog. 2017;56(2):381–8.PubMedGoogle Scholar
  50. 50.
    Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304–17.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O-Farrill E, Borrero-Garcia LD, Forestier-Roman I, Gerena Y, Vlaar CP. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol Cancer Ther. 2017;16(5):805–18.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ellenbroek SI, Collard JG. Rho GTPases: functions and association with cancer. Clin Exp Metastasis. 2007;24(8):657–72.PubMedGoogle Scholar
  54. 54.
    Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582(14):2093–101.PubMedGoogle Scholar
  55. 55.
    Ye H, Zhang Y, Geng L, Li Z. Cdc42 expression in cervical cancer and its effects on cervical tumor invasion and migration. Int J Oncol. 2015;46(2):757–63.PubMedGoogle Scholar
  56. 56.
    Du DS, Yang XZ, Wang Q, Dai WJ, Kuai WX, Liu YL, Tang XJ. Effects of CDC42 on the proliferation and invasion of gastric cancer cells. Mol Med Rep. 2016;13(1):550–4.PubMedGoogle Scholar
  57. 57.
    Guo J, Yu X, Gu J, Lin Z, Zhao G, Xu F, Ge D. Regulation of CXCR57/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumor Biol. 2016;37(5):6371–8.Google Scholar
  58. 58.
    Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42–PAK1 axis. J Pathol. 2017;243(2):208–19.PubMedGoogle Scholar
  59. 59.
    Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Whang YE. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104(20):8438–43.PubMedGoogle Scholar
  60. 60.
    Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.PubMedGoogle Scholar
  61. 61.
    Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life. 2006;58(5–6):312–7.PubMedGoogle Scholar
  62. 62.
    Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Mori M. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Symbiosis School of Biological SciencesSymbiosis International (Deemed University)PuneIndia

Personalised recommendations