Advertisement

Medical Oncology

, 35:148 | Cite as

Imaging of distant metastases of prostate cancer

  • Filippo Pesapane
  • Marcin Czarniecki
  • Matteo Basilio Suter
  • Baris Turkbey
  • Geert Villeirs
Review Article

Abstract

The detection of distant metastases at the initial diagnosis of prostate cancer (PCa) establishes the treatment approach and has a prognostic value, nevertheless it is not well established. Since proposed staging approaches often contradict each other, we aimed to compare the current imaging techniques for staging of advanced PCa, including future applications of the most innovative methods. Conventional imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have been employed for metastatic staging (both N and M staging) of men with high-risk PCa, but surgical pelvic dissection remains the gold standard for N staging. However, functional MRI by using diffusion-weighted imaging, MR lymphography (MRL) with ultra-small paramagnetic iron oxide particles (USPIO), and hybrid PET/MRI imaging showed both high sensitivity and high specificity for nodal staging and depicting metastases. The standard of practice for M staging in PCa includes the radionuclide bone scan and targeted X-ray film, but their performance has generally been poor. Recently, MRI showed promising results with applications in both local and distant staging. Finally, with the development of new PET tracers, PET/CT and PET/MRI offer a combination of excellent pharmacokinetic characteristics, functional information, and precise anatomic localization and morphological correlation of tumor lesions.

Keywords

Prostate cancer staging Imaging staging Lymph node metastases Bone metastases Hybrid imaging 

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Conflict of interest

All the authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethics approval and consent to participate to the study

Institutional Review Board approval was not required because the research does not involve human populations or animals.

Statistics and biometry

No complex statistical methods were necessary for this paper.

References

  1. 1.
    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618–29.  https://doi.org/10.1016/j.eururo.2016.08.003.CrossRefPubMedGoogle Scholar
  2. 2.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.  https://doi.org/10.1056/NEJMoa022749.CrossRefPubMedGoogle Scholar
  3. 3.
    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65(1):124–37.  https://doi.org/10.1016/j.eururo.2013.09.046.CrossRefPubMedGoogle Scholar
  4. 4.
    Bjurlin MA, Turkbey B, Rosenkrantz AB, Gaur S, Choyke PL, Taneja SS. Imaging the high-risk prostate cancer patient: current and future approaches to staging. Urology. 2018.  https://doi.org/10.1016/j.urology.2017.12.001.CrossRefPubMedGoogle Scholar
  5. 5.
    Padhani AR, Lecouvet FE, Tunariu N, Koh DM, De Keyzer F, Collins DJ, et al. Metastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol. 2017;71(1):81–92.  https://doi.org/10.1016/j.eururo.2016.05.033.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cheng L, Montironi R, Bostwick DG, Lopez-Beltran A, Berney DM. Staging of prostate cancer. Histopathology. 2012;60(1):87–117.  https://doi.org/10.1111/j.1365-2559.2011.04025.x.CrossRefPubMedGoogle Scholar
  7. 7.
    van den Bergh RCN, Loeb S, Roobol MJ. Impact of early diagnosis of prostate cancer on survival outcomes. Eur Urol Focus. 2015;1(2):137–46.  https://doi.org/10.1016/j.euf.2015.01.002.CrossRefPubMedGoogle Scholar
  8. 8.
    Engeler CE, Wasserman NF, Zhang G. Preoperative assessment of prostatic carcinoma by computerized tomography. Weaknesses and new perspectives. Urology. 1992;40(4):346–50.CrossRefGoogle Scholar
  9. 9.
    Crawford ED, Stone NN, Yu EY, Koo PJ, Freedland SJ, Slovin SF, et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology. 2014;83(3):664–9.  https://doi.org/10.1016/j.urology.2013.10.026.CrossRefPubMedGoogle Scholar
  10. 10.
    Thoeny HC, Barbieri S, Froehlich JM, Turkbey B, Choyke PL. Functional and targeted lymph node imaging in prostate cancer: current status and future challenges. Radiology. 2017;285(3):728–43.  https://doi.org/10.1148/radiol.2017161517.CrossRefPubMedGoogle Scholar
  11. 11.
    Leyh-Bannurah SR, Gazdovich S, Budaus L, Zaffuto E, Dell’Oglio P, Briganti A, et al. Population-based external validation of the updated 2012 partin tables in contemporary North American prostate cancer patients. Prostate. 2017;77(1):105–13.  https://doi.org/10.1002/pros.23253.CrossRefPubMedGoogle Scholar
  12. 12.
    Hijazi S, Meller B, Leitsmann C, Strauss A, Meller J, Ritter CO, et al. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computerized tomography. Prostate. 2015;75(16):1934–40.  https://doi.org/10.1002/pros.23091.CrossRefPubMedGoogle Scholar
  13. 13.
    Fortuin AS, Smeenk RJ, Meijer HJ, Witjes AJ, Barentsz JO. Lymphotropic nanoparticle-enhanced MRI in prostate cancer: value and therapeutic potential. Curr Urol Rep. 2014;15(3):389.  https://doi.org/10.1007/s11934-013-0389-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Heck MM, Souvatzoglou M, Retz M, Nawroth R, Kubler H, Maurer T, et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41(4):694–701.  https://doi.org/10.1007/s00259-013-2634-1.CrossRefPubMedGoogle Scholar
  15. 15.
    Rigaud J, Tiguert R, Le Normand L, Karam G, Glemain P, Buzelin JM, et al. Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol. 2002;168(4 Pt 1):1423–6.  https://doi.org/10.1097/01.ju.0000030900.55714.76.CrossRefPubMedGoogle Scholar
  16. 16.
    Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11(6):446–54.  https://doi.org/10.1007/s11307-009-0217-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.  https://doi.org/10.1245/s10434-010-0985-4.CrossRefPubMedGoogle Scholar
  18. 18.
    Abdollah F, Sun M, Schmitges J, Thuret R, Bianchi M, Shariat SF, et al. Survival benefit of radical prostatectomy in patients with localized prostate cancer: estimations of the number needed to treat according to tumor and patient characteristics. J Urol. 2012;188(1):73–83.  https://doi.org/10.1016/j.juro.2012.03.005.CrossRefPubMedGoogle Scholar
  19. 19.
    Djavan B. Corrigendum to "Screening for Prostate Cancer: Practical Analysis of the ERSPC and PLCO Trials" [Eur Urol 2011;59:365–9]. Eur Urol. 2011;59(6):365-9.  https://doi.org/10.1016/j.eururo.2011.03.004.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang Y, Isharwal S, Haese A, Chun FK, Makarov DV, Feng Z, et al. Prediction of patient-specific risk and percentile cohort risk of pathological stage outcome using continuous prostate-specific antigen measurement, clinical stage and biopsy Gleason score. BJU Int. 2011;107(10):1562–9.  https://doi.org/10.1111/j.1464-410X.2010.09692.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Roach M 3rd. Re: the use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J Urol. 1993;150(6):1923–4.CrossRefGoogle Scholar
  22. 22.
    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2016.  https://doi.org/10.1016/j.eururo.2016.08.003.CrossRefPubMedGoogle Scholar
  23. 23.
    Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol. 2013;63(3):450–8.  https://doi.org/10.1016/j.eururo.2012.06.057.CrossRefPubMedGoogle Scholar
  24. 24.
    Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol. 2002;167(4):1681–6.CrossRefGoogle Scholar
  25. 25.
    Briganti A, Chun FK, Salonia A, Suardi N, Gallina A, Da Pozzo LF, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol. 2006;50(5):1006–13.  https://doi.org/10.1016/j.eururo.2006.08.015.CrossRefPubMedGoogle Scholar
  26. 26.
    Briganti A, Blute ML, Eastham JH, Graefen M, Heidenreich A, Karnes JR, et al. Pelvic lymph node dissection in prostate cancer. Eur Urol. 2009;55(6):1251–65.  https://doi.org/10.1016/j.eururo.2009.03.012.CrossRefPubMedGoogle Scholar
  27. 27.
    Moore CM, Robertson NL, Arsanious N, Middleton T, Villers A, Klotz L, et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol. 2013;63(1):125–40.  https://doi.org/10.1016/j.eururo.2012.06.004.CrossRefPubMedGoogle Scholar
  28. 28.
    Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2015;68(3):438–50.  https://doi.org/10.1016/j.eururo.2014.11.037.CrossRefPubMedGoogle Scholar
  29. 29.
    Mullerad M, Hricak H, Kuroiwa K, Pucar D, Chen HN, Kattan MW, et al. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol. 2005;174(6):2158–63.  https://doi.org/10.1097/01.ju.0000181224.95276.82.CrossRefPubMedGoogle Scholar
  30. 30.
    Jager GJ, Barentsz JO, Oosterhof GO, Witjes JA, Ruijs SJ. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol. 1996;167(6):1503–7.  https://doi.org/10.2214/ajr.167.6.8956585.CrossRefPubMedGoogle Scholar
  31. 31.
    Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171(6 Pt 1):2122–7.CrossRefGoogle Scholar
  32. 32.
    Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63(4):387–95.  https://doi.org/10.1016/j.crad.2007.05.022.CrossRefPubMedGoogle Scholar
  33. 33.
    Bader P, Burkhard FC, Markwalder R, Studer UE. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J Urol. 2003;169(3):849–54.  https://doi.org/10.1097/01.ju.0000049032.38743.c7.CrossRefPubMedGoogle Scholar
  34. 34.
    Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014;273(1):125–35.  https://doi.org/10.1148/radiol.14132921.CrossRefPubMedGoogle Scholar
  35. 35.
    Woo S, Suh CH, Kim SY, Cho JY, Kim SH. The diagnostic performance of MRI for detection of lymph node metastasis in bladder and prostate cancer: an updated systematic review and diagnostic meta-analysis. AJR Am J Roentgenol. 2018;210(3):W95–109.  https://doi.org/10.2214/AJR.17.18481.CrossRefPubMedGoogle Scholar
  36. 36.
    von Below C, Daouacher G, Wassberg C, Grzegorek R, Gestblom C, Sorensen J, et al. Validation of 3 T MRI including diffusion-weighted imaging for nodal staging of newly diagnosed intermediate-and high-risk prostate cancer. Clin Radiol. 2016;71(4):328–34.  https://doi.org/10.1016/j.crad.2015.12.001.CrossRefGoogle Scholar
  37. 37.
    Budiharto T, Joniau S, Lerut E, Van den Bergh L, Mottaghy F, Deroose CM, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol. 2011;60(1):125–30.  https://doi.org/10.1016/j.eururo.2011.01.015.CrossRefPubMedGoogle Scholar
  38. 38.
    Pinaquy JB, De Clermont-Galleran H, Pasticier G, Rigou G, Alberti N, Hindie E, et al. Comparative effectiveness of [(18) F]-fluorocholine PET-CT and pelvic MRI with diffusion-weighted imaging for staging in patients with high-risk prostate cancer. Prostate. 2015;75(3):323–31.  https://doi.org/10.1002/pros.22921.CrossRefPubMedGoogle Scholar
  39. 39.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.CrossRefGoogle Scholar
  40. 40.
    Koh DM, Lee JM, Bittencourt LK, Blackledge M, Collins DJ. Body diffusion-weighted MR imaging in oncology: imaging at 3 T. Magn Reson Imaging Clin N Am. 2016;24(1):31–44.  https://doi.org/10.1016/j.mric.2015.08.007.CrossRefPubMedGoogle Scholar
  41. 41.
    Matsubayashi RN, Fujii T, Yasumori K, Muranaka T, Momosaki S. Apparent diffusion coefficient in invasive ductal breast carcinoma: correlation with detailed histologic features and the enhancement ratio on dynamic contrast-enhanced MR images. J Oncol. 2010.  https://doi.org/10.1155/2010/821048.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 2009;103(7):883–8.  https://doi.org/10.1111/j.1464-410X.2008.08130.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, Ito S, Akashi T, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging. 2001;13(5):757–60.CrossRefGoogle Scholar
  44. 44.
    Liu Y, Ye Z, Sun H, Bai R. Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical cancer. Int J Gynecol Cancer. 2015;25(6):1073–8.  https://doi.org/10.1097/IGC.0000000000000472.CrossRefPubMedGoogle Scholar
  45. 45.
    Eiber M, Beer AJ, Holzapfel K, Tauber R, Ganter C, Weirich G, et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol. 2010;45(1):15–23.  https://doi.org/10.1097/RLI.0b013e3181bbdc2f.CrossRefPubMedGoogle Scholar
  46. 46.
    Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12(2):181–91.  https://doi.org/10.1016/S1470-2045(10)70103-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Roy C, Bierry G, Matau A, Bazille G, Pasquali R. Value of diffusion-weighted imaging to detect small malignant pelvic lymph nodes at 3 T. Eur Radiol. 2010;20(8):1803–11.  https://doi.org/10.1007/s00330-010-1736-4.CrossRefPubMedGoogle Scholar
  48. 48.
    Mir N, Sohaib SA, Collins D, Koh DM. Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol. 2010;54(4):358–64.  https://doi.org/10.1111/j.1754-9485.2010.02182.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Turkbey B, Agarwal HK, Shih J, Bernardo M, McKinney YL, Daar D, et al. A phase I dosing study of ferumoxytol for MR lymphography at 3 T in patients with prostate cancer. AJR Am J Roentgenol. 2015;205(1):64–9.  https://doi.org/10.2214/AJR.14.13009.CrossRefPubMedGoogle Scholar
  50. 50.
    Czarniecki M, Pesapane F, Wood BJ, Choyke P, Turkbey B. Ultra-small superparamagnetic iron oxide contrast agents for lymph node staging of high-risk prostate cancer. Transl Androl Urol. 2018.  https://doi.org/10.21037/tau.2018.05.15.CrossRefGoogle Scholar
  51. 51.
    Wu L, Cao Y, Liao C, Huang J, Gao F. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Radiol. 2011;80(2):582–9.  https://doi.org/10.1016/j.ejrad.2009.11.027.CrossRefPubMedGoogle Scholar
  52. 52.
    Heesakkers RA, Futterer JJ, Hovels AM, van den Bosch HC, Scheenen TW, Hoogeveen YL, et al. Prostate cancer evaluated with ferumoxtran-10-enhanced T2*-weighted MR Imaging at 1.5 and 3.0 T: early experience. Radiology. 2006;239(2):481–7.  https://doi.org/10.1148/radiol.2392050411.CrossRefPubMedGoogle Scholar
  53. 53.
    Harisinghani MG, Dixon WT, Saksena MA, Brachtel E, Blezek DJ, Dhawale PJ, et al. MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics. 2004;24(3):867–78.  https://doi.org/10.1148/rg.243035190.CrossRefPubMedGoogle Scholar
  54. 54.
    Lin W, Hung SC, Lee YZ, Wong TZ. Hybrid PET/MR: State-of-the-art and future challenges. Magn Reson Imaging Clin N Am. 2017;25(2):xv-xvii.  https://doi.org/10.1016/j.mric.2017.02.001.CrossRefPubMedGoogle Scholar
  55. 55.
    Quick HH. PET/MR hybrid imaging. Z Med Phys. 2017;27(4):269–70.  https://doi.org/10.1016/j.zemedi.2017.09.002.CrossRefPubMedGoogle Scholar
  56. 56.
    Shah SN, Huang SS. Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging. 2015;40(6):1358–65.  https://doi.org/10.1007/s00261-015-0443-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging. 2016;43(1):55–69.  https://doi.org/10.1007/s00259-015-3202-7.CrossRefPubMedGoogle Scholar
  58. 58.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.  https://doi.org/10.1016/j.eururo.2012.09.039.CrossRefPubMedGoogle Scholar
  59. 59.
    Schuster DM, Nye JA, Nieh PT, Votaw JR, Halkar RK, Issa MM, et al. Initial experience with the radiotracer anti-1-amino-3-[18F]Fluorocyclobutane-1-carboxylic acid (anti-[18F]FACBC) with PET in renal carcinoma. Mol Imaging Biol. 2009;11(6):434–8.  https://doi.org/10.1007/s11307-009-0220-5.CrossRefPubMedGoogle Scholar
  60. 60.
    Nanni C, Schiavina R, Brunocilla E, Borghesi M, Ambrosini V, Zanoni L, et al. 18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. Clin Genitourin Cancer. 2014;12(2):106–10.  https://doi.org/10.1016/j.clgc.2013.08.002.CrossRefPubMedGoogle Scholar
  61. 61.
    Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993;53(2):227–30.PubMedGoogle Scholar
  62. 62.
    Grauer LS, Lawler KD, Marignac JL, Kumar A, Goel AS, Wolfert RL. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM’ protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 1998;58(21):4787–9.PubMedGoogle Scholar
  63. 63.
    Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, et al. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep. 2016;6:23314.  https://doi.org/10.1038/srep23314.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Han D, Wu J, Han Y, Wei M, Han S, Lin R, et al. A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer. Oncotarget. 2016;7(37):59471–81.  https://doi.org/10.18632/oncotarget.10697.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    How Kit N, Dugue AE, Sevin E, Allouache N, Lesaunier F, Joly F, et al. Pairwise comparison of 18F-FDG and 18F-FCH PET/CT in prostate cancer patients with rising PSA and known or suspected second malignancy. Nucl Med Commun. 2016;37(4):348–55.  https://doi.org/10.1097/MNM.0000000000000457.CrossRefPubMedGoogle Scholar
  66. 66.
    Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, et al. PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol. 2016;18(3):411–9.  https://doi.org/10.1007/s11307-016-0957-6.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.  https://doi.org/10.1007/s00259-014-2949-6.CrossRefPubMedGoogle Scholar
  68. 68.
    Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K, et al. Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43(1):70–83.  https://doi.org/10.1007/s00259-015-3206-3.CrossRefPubMedGoogle Scholar
  69. 69.
    Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomacker K, et al. Comparison of [(18)F]DCFPyL and [(68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17(4):575–84.  https://doi.org/10.1007/s11307-015-0866-0.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19(19):5434–43.  https://doi.org/10.1158/1078-0432.CCR-12-3490.CrossRefPubMedGoogle Scholar
  71. 71.
    Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, et al. Pilot comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 2016;57(4):557–62.  https://doi.org/10.2967/jnumed.115.168393.CrossRefPubMedGoogle Scholar
  72. 72.
    Bluemel C, Krebs M, Polat B, Linke F, Eiber M, Samnick S, et al. 68 Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin Nucl Med. 2016;41(7):515–21.  https://doi.org/10.1097/RLU.0000000000001197.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Antoch G, Bockisch A. Combined. PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):113-20.  https://doi.org/10.1007/s00259-008-0951-6.CrossRefGoogle Scholar
  74. 74.
    De Visschere PJ, Briganti A, Futterer JJ, Ghadjar P, Isbarn H, Massard C, et al. Role of multiparametric magnetic resonance imaging in early detection of prostate cancer. Insights Imaging. 2016;7(2):205–14.  https://doi.org/10.1007/s13244-016-0466-9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017.  https://doi.org/10.1016/S0140-6736(16)32401-1.CrossRefPubMedGoogle Scholar
  76. 76.
    Pesapane F, Patella F, Fumarola EM, Panella S, Ierardi AM, Pompili GG, et al. Intravoxel incoherent motion (IVIM) diffusion weighted imaging (DWI) in the periferic prostate cancer detection and stratification. Med Oncol. 2017;34(3):35.  https://doi.org/10.1007/s12032-017-0892-7.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang L, Mullerad M, Chen HN, Eberhardt SC, Kattan MW, Scardino PT, et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232(1):133–9.  https://doi.org/10.1148/radiol.2321031086.CrossRefPubMedGoogle Scholar
  78. 78.
    Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003;290(24):3199–206.  https://doi.org/10.1001/jama.290.24.3199.CrossRefPubMedGoogle Scholar
  79. 79.
    Schmidt GP, Baur-Melnyk A, Tiling R, Hahn K, Reiser MF, Schoenberg SO. Comparison of high resolution whole-body MRI using parallel imaging and PET-CT. First experiences with a 32-channel MRI system. Radiologe. 2004;44(9):889–98.  https://doi.org/10.1007/s00117-004-1102-0.CrossRefPubMedGoogle Scholar
  80. 80.
    Turkington TG, Hoffman JM, Jaszczak RJ, MacFall JR, Harris CC, Kilts CD, et al. Accuracy of surface fit registration for PET and MR brain images using full and incomplete brain surfaces. J Comput Assist Tomogr. 1995;19(1):117–24.CrossRefGoogle Scholar
  81. 81.
    Heesakkers RA, Jager GJ, Hovels AM, de Hoop B, van den Bosch HC, Raat F, et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology. 2009;251(2):408–14.  https://doi.org/10.1148/radiol.2512071018.CrossRefPubMedGoogle Scholar
  82. 82.
    Heesakkers RA, Hovels AM, Jager GJ, van den Bosch HC, Witjes JA, Raat HP, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 2008;9(9):850–6.  https://doi.org/10.1016/S1470-2045(08)70203-1.CrossRefPubMedGoogle Scholar
  83. 83.
    Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia. 2007;9(12):1160–5.CrossRefGoogle Scholar
  84. 84.
    Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW, Binser T, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55(4):761–9.  https://doi.org/10.1016/j.eururo.2008.12.034.CrossRefPubMedGoogle Scholar
  85. 85.
    Birkhauser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013;64(6):953–60.  https://doi.org/10.1016/j.eururo.2013.07.032.CrossRefPubMedGoogle Scholar
  86. 86.
    Beauregard JM, Blouin AC, Fradet V, Caron A, Fradet Y, Lemay C, et al. FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging. 2015;15:2.  https://doi.org/10.1186/s40644-015-0038-0.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Vag T, Heck MM, Beer AJ, Souvatzoglou M, Weirich G, Holzapfel K, et al. Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT. Eur Radiol. 2014;24(8):1821–6.  https://doi.org/10.1007/s00330-014-3240-8.CrossRefPubMedGoogle Scholar
  88. 88.
    Poulsen MH, Bouchelouche K, Høilund-Carlsen PF, Petersen H, Gerke O, Steffansen SI, et al. [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int. 2012;110(11):1666–71.  https://doi.org/10.1111/j.1464-410X.2012.11150.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.  https://doi.org/10.1016/j.eururo.2012.09.039.CrossRefPubMedGoogle Scholar
  90. 90.
    Schumacher MC, Radecka E, Hellström M, Jacobsson H, Sundin A. [11C]Acetate positron emission tomography-computed tomography imaging of prostate cancer lymph-node metastases correlated with histopathological findings after extended lymphadenectomy. Scand J Urol. 2015;49(1):35–42.  https://doi.org/10.3109/21681805.2014.932840.CrossRefPubMedGoogle Scholar
  91. 91.
    Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, et al. Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112(8):1062–72.  https://doi.org/10.1111/bju.12279.CrossRefPubMedGoogle Scholar
  92. 92.
    Rowe SP, Macura KJ, Ciarallo A, Mena E, Blackford A, Nadal R, et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med. 2016;57(1):46–53.  https://doi.org/10.2967/jnumed.115.163782.CrossRefPubMedGoogle Scholar
  93. 93.
    Budäus L, Leyh-Bannurah SR, Salomon G, Michl U, Heinzer H, Huland H, et al. Initial experience of (68)Ga-PSMA PET/CT Imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69(3):393–6.  https://doi.org/10.1016/j.eururo.2015.06.010.CrossRefPubMedGoogle Scholar
  94. 94.
    Rauscher I, Maurer T, Beer AJ, Graner FP, Haller B, Weirich G, et al. Value of 68 Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J Nucl Med. 2016;57(11):1713–9.  https://doi.org/10.2967/jnumed.116.173492.CrossRefPubMedGoogle Scholar
  95. 95.
    Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol. 2000;31(5):578–83.CrossRefGoogle Scholar
  96. 96.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.PubMedGoogle Scholar
  97. 97.
    Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99 m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.  https://doi.org/10.1016/j.eururo.2012.02.020.CrossRefPubMedGoogle Scholar
  98. 98.
    McCarthy M, Siew T, Campbell A, Lenzo N, Spry N, Vivian J, et al. 18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38(1):14–22.  https://doi.org/10.1007/s00259-010-1579-x.CrossRefPubMedGoogle Scholar
  99. 99.
    Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d’Othee BJ, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25(22):3281–7.  https://doi.org/10.1200/JCO.2006.09.2940.CrossRefPubMedGoogle Scholar
  100. 100.
    Poulsen MH, Petersen H, Høilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18)F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int. 2014;114(6):818–23.  https://doi.org/10.1111/bju.12599.CrossRefPubMedGoogle Scholar
  101. 101.
    Venkitaraman R, Cook GJ, Dearnaley DP, Parker CC, Khoo V, Eeles R, et al. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol. 2009;53(3):241–7.  https://doi.org/10.1111/j.1754-9485.2009.02070.x.CrossRefPubMedGoogle Scholar
  102. 102.
    Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35(10):1766–74.  https://doi.org/10.1007/s00259-008-0788-z.CrossRefPubMedGoogle Scholar
  103. 103.
    Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, et al. EAU guidelines on prostate cancer. Eur Urol. 2008;53(1):68–80.  https://doi.org/10.1016/j.eururo.2007.09.002.CrossRefPubMedGoogle Scholar
  104. 104.
    Horwich A, Hugosson J, de Reijke T, Wiegel T, Fizazi K, Kataja V, et al. Prostate cancer: ESMO consensus conference guidelines 2012. Ann Oncol. 2013;24(5):1141–62.  https://doi.org/10.1093/annonc/mds624.CrossRefGoogle Scholar
  105. 105.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177(1):229–36.  https://doi.org/10.2214/ajr.177.1.1770229.CrossRefPubMedGoogle Scholar
  106. 106.
    Condon BR, Buchanan R, Garvie NW, Ackery DM, Fleming J, Taylor D, et al. Assessment of progression of secondary bone lesions following cancer of the breast or prostate using serial radionuclide imaging. Br J Radiol. 1981;54(637):18–23.  https://doi.org/10.1259/0007-1285-54-637-18.CrossRefPubMedGoogle Scholar
  107. 107.
    Pollen JJ, Gerber K, Ashburn WL, Schmidt JD. Nuclear bone imaging in metastatic cancer of the prostate. Cancer. 1981;47(11):2585–94.CrossRefGoogle Scholar
  108. 108.
    Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol. 2014;43(11):1503–13.  https://doi.org/10.1007/s00256-014-1903-9.CrossRefPubMedGoogle Scholar
  109. 109.
    Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23(2):341–58.  https://doi.org/10.1148/rg.232025103.CrossRefPubMedGoogle Scholar
  110. 110.
    Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.  https://doi.org/10.1200/JCO.2004.08.181.CrossRefPubMedGoogle Scholar
  111. 111.
    Eustace S, Tello R, DeCarvalho V, Carey J, Wroblicka JT, Melhem ER, et al. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol. 1997;169(6):1655–61.  https://doi.org/10.2214/ajr.169.6.9393186.CrossRefPubMedGoogle Scholar
  112. 112.
    Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med. 2001;45(1):53–64.PubMedGoogle Scholar
  113. 113.
    Jacobson AF, Fogelman I. Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med. 1998;25(9):1219–23.CrossRefGoogle Scholar
  114. 114.
    Soloway MS, Hardeman SW, Hickey D, Raymond J, Todd B, Soloway S, et al. Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer. 1988;61(1):195–202.CrossRefGoogle Scholar
  115. 115.
    Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kuhn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17(8):2381–9.  https://doi.org/10.1200/JCO.1999.17.8.2381.CrossRefPubMedGoogle Scholar
  116. 116.
    Han LJ, Au-Yong TK, Tong WC, Chu KS, Szeto LT, Wong CP. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25(6):635–8.CrossRefGoogle Scholar
  117. 117.
    Venkitaraman R, Sohaib A, Cook G. MRI or bone scan or both for staging of prostate cancer? J Clin Oncol. 2007;25(36):5837–8.  https://doi.org/10.1200/JCO.2007.14.3875.CrossRefPubMedGoogle Scholar
  118. 118.
    Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42(12):1800–4.PubMedGoogle Scholar
  119. 119.
    Helyar V, Mohan HK, Barwick T, Livieratos L, Gnanasegaran G, Clarke SE, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37(4):706–13.  https://doi.org/10.1007/s00259-009-1334-3.CrossRefPubMedGoogle Scholar
  120. 120.
    Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol. 2008;15(6):516–9.  https://doi.org/10.1111/j.1442-2042.2008.02028.x.CrossRefPubMedGoogle Scholar
  121. 121.
    Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40(10):1623–9.PubMedGoogle Scholar
  122. 122.
    Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41(1):59–67.  https://doi.org/10.1007/s00259-013-2532-6.CrossRefPubMedGoogle Scholar
  123. 123.
    Le Ster C, Gambarota G, Lasbleiz J, Guillin R, Decaux O, Saint-Jalmes H. Breath-hold MR measurements of fat fraction, T1, and T2 * of water and fat in vertebral bone marrow. J Magn Reson Imaging. 2016;44(3):549–55.  https://doi.org/10.1002/jmri.25205.CrossRefPubMedGoogle Scholar
  124. 124.
    Perez-Lopez R, Mateo J, Mossop H, Blackledge MD, Collins DJ, Rata M, et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology. 2017;283(1):168–77.  https://doi.org/10.1148/radiol.2016160646.CrossRefPubMedGoogle Scholar
  125. 125.
    Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol. 2007;17(3):743–61.  https://doi.org/10.1007/s00330-006-0404-1.CrossRefPubMedGoogle Scholar
  126. 126.
    Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med. 1993;34(12):2191–8.PubMedGoogle Scholar
  127. 127.
    Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate. 2005;65(2):178–87.  https://doi.org/10.1002/pros.20280.CrossRefPubMedGoogle Scholar
  128. 128.
    Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998;8(8):1327–34.  https://doi.org/10.1007/s003300050547.CrossRefPubMedGoogle Scholar
  129. 129.
    Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol. 1998;27(9):471–83.CrossRefGoogle Scholar
  130. 130.
    Ghanem N, Altehoefer C, Kelly T, Lohrmann C, Winterer J, Schafer O, et al. Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. In Vivo. 2006;20(1):173–82.PubMedGoogle Scholar
  131. 131.
    Engelhard K, Hollenbach HP, Wohlfart K, von Imhoff E, Fellner FA. Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol. 2004;14(1):99–105.  https://doi.org/10.1007/s00330-003-1968-7.CrossRefPubMedGoogle Scholar
  132. 132.
    Minamimoto R, Loening A, Jamali M, Barkhodari A, Mosci C, Jackson T, et al. Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med. 2015;56(12):1862–8.  https://doi.org/10.2967/jnumed.115.162610.CrossRefPubMedGoogle Scholar
  133. 133.
    Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A. Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol. 2013;200(1):163–70.  https://doi.org/10.2214/AJR.11.8185.CrossRefPubMedGoogle Scholar
  134. 134.
    Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed. 2017;30(3).  https://doi.org/10.1002/nbm.3333.CrossRefGoogle Scholar
  135. 135.
    Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–77.  https://doi.org/10.1007/s00330-011-2173-8.CrossRefPubMedGoogle Scholar
  136. 136.
    Hillengass J, Bauerle T, Bartl R, Andrulis M, McClanahan F, Laun FB, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol. 2011;153(6):721–8.  https://doi.org/10.1111/j.1365-2141.2011.08658.x.CrossRefPubMedGoogle Scholar
  137. 137.
    Tateishi U, Morita S, Taguri M, Shizukuishi K, Minamimoto R, Kawaguchi M, et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med. 2010;24(7):523–31.  https://doi.org/10.1007/s12149-010-0393-7.CrossRefPubMedGoogle Scholar
  138. 138.
    Harmon SAS, Bergvall E, Mena E, Shih JH, Adler S, McKinney Y, et al. A prospective comparison of (18)F-sodium fluoride PET/CT and PSMA-targeted (18)F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 2018.  https://doi.org/10.2967/jnumed.117.207373.CrossRefPubMedGoogle Scholar
  139. 139.
    Eiber M, Rauscher I, Souvatzoglou M, Maurer T, Schwaiger M, Holzapfel K, et al. Prospective head-to-head comparison of (11)C-choline-PET/MR and (11)C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(13):2179–88.  https://doi.org/10.1007/s00259-017-3797-y.CrossRefPubMedGoogle Scholar
  140. 140.
    Metser U, Berlin A, Halankar J, Murphy G, Jhaveri KS, Ghai S, et al. (18)F-Fluorocholine PET Whole-Body MRI in the Staging of High-Risk Prostate Cancer. AJR Am J Roentgenol. 2018;210(3):635–40.  https://doi.org/10.2214/AJR.17.18567.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Health SciencesPostgraduation School of Radiodiagnostic of MilanMilanItaly
  2. 2.Molecular Imaging Program, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Medical OncologyASST Sette laghiVareseItaly
  4. 4.Department of RadiologyGhent University HospitalGhentBelgium

Personalised recommendations