Advertisement

Medical Oncology

, 35:140 | Cite as

Human papillomavirus and colorectal cancer

  • Marina K. Ibragimova
  • Matvey M. Tsyganov
  • Nicolay V. Litviakov
Review Article
  • 95 Downloads

Abstract

The involvement of human papillomavirus in carcinogenesis of colorectal cancer is a contentious issue. The presented meta-analysis was performed to systematize the currently available research results on the matter. The analysis was based on the data from 19 studies to assess the association of HPV infection with colorectal cancer. According to the obtained data, researchers determined the statistically significant level of HPV infection in tumor tissue of CRC and the resulting relative risk of developing CRC with HPV infection to be RR (95% CI) = 2.97 (1.42–6.22) with p = 0.0039.

Keywords

HPV Colorectal cancer Meta-analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors state that there are no conflicts of interest.

References

  1. 1.
    DeBarros M, et al. Outcome comparison following colorectal cancer surgery in an equal access system. J Surg Res. 2013;184(1):507–13.CrossRefGoogle Scholar
  2. 2.
    Siegel R, et al. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17.CrossRefGoogle Scholar
  3. 3.
    Mitchell EP. Targeted therapy for metastatic colorectal cancer: role of aflibercept. Clin Colorectal Cancer. 2013;12(2):73–85.CrossRefGoogle Scholar
  4. 4.
    Jemal A, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefGoogle Scholar
  5. 5.
    Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefGoogle Scholar
  6. 6.
    Kaprin AD, et al. Malignant neoplasms in Russia in 2013 (morbidity and mortality). Moscow: FGBU “MNIOI im. P.A. Herzen” Ministry of Health and Social Development of Russia; 2013.Google Scholar
  7. 7.
    Mansouri D, et al. Screening for colorectal cancer: What is the impact on the determinants of outcome? Crit Rev Oncol/Hematol. 2013;3(85):342–9.CrossRefGoogle Scholar
  8. 8.
    Soto Y, et al. Molecular evidence of high-risk human papillomavirus infection in colorectal tumours from Cuban patients. Memórias do Instituto Oswaldo Cruz. 2016;111(12):731–6.CrossRefGoogle Scholar
  9. 9.
    Chan DS, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6(6):e20456.CrossRefGoogle Scholar
  10. 10.
    Uspenskaya Yu. et al. Gender aspects of prevention and screening of colorectal cancer in women. Gynecology. 2013;1:80–4.Google Scholar
  11. 11.
    Johnson CM, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207–22.CrossRefGoogle Scholar
  12. 12.
    Parkin DM. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010: Introduction. Br J Cancer. 2011;105(Suppl 2):2.CrossRefGoogle Scholar
  13. 13.
    Ibragimova М, et al. Integrative and episomal forms 16 genotypes of human papillomavirus for cervical intraepithelial neoplasia and cervical cancer. Probl Virol. 2016; 61:6.Google Scholar
  14. 14.
    Bychkov V, et al. Comprehensive meta-analytical summary on human papillomavirus association with head and neck cancer. Exp Oncol. 2016;38(2):68–72.PubMedGoogle Scholar
  15. 15.
    Ferlay J, et al. Cancer incidence and mortality worldwide, international agency for research on cancer. Lyon: Cancer Incidence and Mortality Worldwide, International Agency for Research on Cancer; 2013.Google Scholar
  16. 16.
    Hampl M, et al. Effect of human papillomavirus vaccines on vulvar, vaginal, and anal intraepithelial lesions and vulvar cancer. Obstet Gynecol. 2006;108(6):1361–8.CrossRefGoogle Scholar
  17. 17.
    Beckmann AM, et al. Human papillomavirus infection and anal cancer. Int J Cancer. 1989;43(6):1042–9.CrossRefGoogle Scholar
  18. 18.
    Palmer J, et al. Anal cancer and human papillomaviruses. Dis Colon Rectum. 1989;32(12):1016–22.CrossRefGoogle Scholar
  19. 19.
    Boguszakova L, et al. Absence of cytomegalovirus, Epstein-Barr virus, and papillomavirus DNA from adenoma and adenocarcinoma of the colon. Acta Virol. 1988;32(4):303–8.PubMedGoogle Scholar
  20. 20.
    Yavuzer D, et al. Investigation of human papillomavirus DNA in colorectal carcinomas and adenomas. Med Oncol. 2011;28(1):127–32.CrossRefGoogle Scholar
  21. 21.
    Gornick MC, et al. Human papillomavirus is not associated with colorectal cancer in a large international study. Cancer Causes Control. 2010;21(5):737–43.CrossRefGoogle Scholar
  22. 22.
    Karpinski P, et al. Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype. Tumor Biol. 2011;32(4):653–9.CrossRefGoogle Scholar
  23. 23.
    Snietura M, et al. Does human papilloma virus participate in colorectal carcinogenesis. J Biol Regul Homeost Agents. 2012;26:757–62.PubMedGoogle Scholar
  24. 24.
    Lee Y, et al. Human papillomavirus type 18 in colorectal cancer. J Microbiol Immunol Infect. 2001; 34(2): 87–91.PubMedGoogle Scholar
  25. 25.
    Giuliani L, et al. Detection of oncogenic DNA viruses in colorectal cancer. Anticancer Res. 2008;28(2B):1405–10.PubMedGoogle Scholar
  26. 26.
    Ghabreau L, et al. High-risk human papillomavirus infections in colorectal cancer in the Syrian population and their association with Fascin, Id-1 and P-cadherin expressions: a tissue microarray study. Clin Cancer Invest J. 2012;1(1):26.CrossRefGoogle Scholar
  27. 27.
    Cheng J, et al. Detection of human papillomavirus DNA in colorectal carcinomas by polymerase chain reaction. Gut. 1995;37(1):87–90.CrossRefGoogle Scholar
  28. 28.
    Salepci T, et al. Detection of human papillomavirus DNA by polymerase chain reaction and southern blot hybridization in colorectal cancer patients. J BU ON. 2009;14(3):495–9.Google Scholar
  29. 29.
    Deschoolmeester V, et al. Detection of HPV and the role of p16 INK4A overexpression as a surrogate marker for the presence of functional HPV oncoprotein E7 in colorectal cancer. BMC Cancer. 2010;10(1):117.CrossRefGoogle Scholar
  30. 30.
    Pérez LO, et al. Human papillomavirus DNA and oncogene alterations in colorectal tumors. Pathol Oncol Res. 2010;16(3):461–8.CrossRefGoogle Scholar
  31. 31.
    McGregor B, et al. Confirmation of the association of human papillomavirus with human colon cancer. Am J Surg. 1993;166(6):738–42.CrossRefGoogle Scholar
  32. 32.
    Yu H-G, et al. Deletion of the FHIT gene in human colorectal cancer is independent of high-risk HPV infection. Int J Colorectal Dis. 2002;17(6):396–401.CrossRefGoogle Scholar
  33. 33.
    Cavatorta AL, et al. Differential expression of the human homologue of drosophila discs large oncosuppressor in histologic samples from human papillomavirus–associated lesions as a marker for progression to malignancy. Int J Cancer. 2004;111(3):373–80.CrossRefGoogle Scholar
  34. 34.
    Bodaghi S, et al. Colorectal papillomavirus infection in patients with colorectal cancer. Clin Cancer Res. 2005;11(8):2862–7.CrossRefGoogle Scholar
  35. 35.
    Perez L, et al. Analysis of adenocarcinoma of the colon and rectum: detection of human papillomavirus (HPV) DNA by polymerase chain reaction. Colorectal Dis. 2005;7(5):492–5.CrossRefGoogle Scholar
  36. 36.
    Damin DdC, et al. Evidence for an association of human papillomavirus infection and colorectal cancer. Eur J Surg Oncol. 2007;33(5):569–74.CrossRefGoogle Scholar
  37. 37.
    Militello V, et al. Investigation on the presence of polyomavirus, herpesvirus, and papillomavirus sequences in colorectal neoplasms and their association with cancer. Int J Cancer. 2009;124(10):2501–3.CrossRefGoogle Scholar
  38. 38.
    Liu F, et al. Prevalence of human papillomavirus in Chinese patients with colorectal cancer. Colorectal Dis. 2011;13(8):865–71.CrossRefGoogle Scholar
  39. 39.
    Burnett-Hartman AN, et al. No evidence for human papillomavirus in the etiology of colorectal polyps. Cancer Epidemiol Prev Biomark. 2011.  https://doi.org/10.1158/1055-9965.EPI-11-0450.CrossRefGoogle Scholar
  40. 40.
    Toru S, Bilezikçi B. Early changes in carcinogenesis of colorectal adenomas. West Indian Med J. 2012;61(1):10–6.CrossRefGoogle Scholar
  41. 41.
    Burnett-Hartman AN, et al. Human papillomavirus DNA is rarely detected in colorectal carcinomas and not associated with microsatellite instability: the Seattle colon cancer family registry. Cancer Epidemiol Prev Biomark. 2013;22(2):317–9.CrossRefGoogle Scholar
  42. 42.
    Taherian H, et al. Lack of association between human papillomavirus infection and colorectal cancer. Prz Gastroenterol. 2014;9(5):280.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Tanzi E, et al. Human papillomavirus detection in paraffin-embedded colorectal cancer tissues. J Gen Virol. 2015;96(1):206–9.CrossRefGoogle Scholar
  44. 44.
    Bernabe-Dones RD, et al. High prevalence of human papillomavirus in colorectal cancer in Hispanics: a case-control study. Gastroenterol Res Pract. 2016.  https://doi.org/10.1155/2016/7896716.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vuitton L, et al. Human papillomaviruses in colorectal cancers: A case-control study in western patients. Dig Liver Dis. 2017;49(4):446–50.CrossRefGoogle Scholar
  46. 46.
    Chen T-H, et al. Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol WJG. 2012;18(30):4051.CrossRefGoogle Scholar
  47. 47.
    Lorenzon L, et al. Human papillomavirus does not have a causal role in colorectal carcinogenesis. World J Gastroenterol WJG. 2015;21(1):342.CrossRefGoogle Scholar
  48. 48.
    Kachalina OV, et al. Modern ideas about the role of human papillomavirus in the genesis of cervical cancer (review). Med Alm. 2011;5:116–20.Google Scholar
  49. 49.
    Vink MA, et al. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. Am J Epidemiol. 2013;178:1161–9.CrossRefGoogle Scholar
  50. 50.
    Hu Z, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47(2):158–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cancer Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations