Medical Oncology

, 35:22 | Cite as

Prognostic value of epidermal growth factor receptor mutations and histologic subtypes with lung adenocarcinoma

  • Nozomu Motono
  • Aika Funasaki
  • Atsushi Sekimura
  • Katsuo Usuda
  • Hidetaka Uramoto
Original Paper


The epidermal growth factor receptor (EGFR) mutation status has become one of the most important factors in the treatment of non-small cell lung cancer. However, the relationship between EGFR mutation and the histologic subtype of lung adenocarcinoma remains to be fully elucidated. We examined the relationship between the predominant subtype of adenocarcinoma and the prognosis and investigated the correlation between a new subtype of adenocarcinoma and EGFR mutations. This study included 182 patients with adenocarcinoma who underwent complete resection. The rate of EGFR mutation-positive patients was significantly higher among female patients, never smokers, patients with small tumors (< 3 cm in size), patients with well-differentiated tumors, and patients with a pStage I classification. The rates of adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and lepidic-predominant subtype were high in male EGFR mutation-positive patients. The prevalence of the acinar and papillary-predominant subtypes was high among EGFR mutation-positive female patients, as was AIS, MIA, and the lepidic-predominant subtype. The progression-free survival (PFS) of the EGFR mutation-positive patients was significantly better than that of the EGFR mutation-negative patients (75.8 vs 67.1%, p = 0.03). However, the multivariate analysis of clinicopathologic and histologic factors did not reveal the prognostic impact of the EGFR mutation status on PFS. The overall survival (OS) of the EGFR mutation-positive patients was significantly better than that of the EGFR mutation-negative patients (93.7 vs 63.4%, p < 0.01). However, in the multivariate analysis the EGFR mutation status was not significantly associated with OS.


EGFR mutation Histologic subtype Lung adenocarcinoma Prognosis 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was approved by Ethics Committee of the Kanazawa Medical University in Japan.

Informed consent

All the study participants gave their written informed consent to participation in the study.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: biology and treatment options. Biochem Biophys Acta. 2015;1856:189–210.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR, et al. Non-small cell lung cancer, version 2.2013. J Nat Compr Cancer New. 2013;11:645–53.CrossRefGoogle Scholar
  4. 4.
    Travis W, Brambilla E, Noguchi M, Nicholson A, Geisinger K, Yatabe Y. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hirscha FR, Scagliottib GV, Langerc CJ, Varella-Garciaa M, Franklina WA. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer. 2003;41:S29–42.CrossRefGoogle Scholar
  6. 6.
    Kris MG, Natale RB, Herbst RS, Lynch TJ, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancar. JAMA. 2003;290:2149–58.CrossRefPubMedGoogle Scholar
  7. 7.
    Pérez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, et al. Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J Clin Oncol. 2004;22:3238–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non–small cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.CrossRefPubMedGoogle Scholar
  12. 12.
    Mitsudomi T, Kosaka T, Yatabe Y. Biological and clinical implications of EGFR mutations in lung cancer. Int J Clin Oncol. 2006;11:190–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Fujimoto M, Kawakami F, et al. Validation of the IASLC/ATS/ERS Lung Adenocarcinoma Classification for Prognosis and Association with EGFR and KRAS gene mutations analysis of 440 japanese patients. J Thorac Oncol. 2013;8:52–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Villa C, Cagle PT, Johnson M, Patel JD, Yeldandi AV, Raj R, et al. Correlation of EGFR mutation status with predominant histologic subtype of adenocarcinoma according to the New Lung Adenocarcinoma Classification of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society. Arch Pathol Lab Med. 2014;138:1353–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Maturu VN, Singh N, Bal A, Gupta N, Das A, Behera D. Relationship of epidermal growth factor receptor activating mutations with histologic subtyping according to International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society 2011 adenocarcinoma classification and their impact on overall survival. Lung India. 2016;33:257–66.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang Y, Sun Y, Pan Y, Li C, Shen L, Li Y, et al. Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histological subtypes and age at diagnosis. Clin Cancer Res. 2012;18(7):1947–53.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shim HS, Lee DH, Park EJ, Kim SH. Histopathologic characteristics of lung adenocarcinomas with epidermal growth factor receptor mutations in the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Lung Adenocarcinoma Classification. Arch Pathol Lab Med. 2011;135:1329–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Song Z, Zhu H, Guo Z, Wu W, Sun W, Zhang Y. Correlation of EGFR mutation and predominant histologic subtype according to the new lung adenocarcinoma classification in Chinese patients. Med Oncol. 2013;30:645.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen Z, Liu X, Zhao J, Yang H, Teng X. Correlation of EGFR mutation and histological subtype according to the IASLC/ATS/ERS classification of lung adenocarcinoma. Int J Clin Exp Pathol. 2014;7(11):8039–45.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Russell PA, Barnett SA, Walkiewicz M, Wainer Z, Conron M, Wright GM, et al. Correlation of mutation status and survival with predominant histologic subtype according to the New IASLC/ATS/ERS lung adenocarcinoma classification in Stage III (N2) patients. J Thorac Oncol. 2013;8:461–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu F, Li S, Dong B, Zhang S, Lv C, Yang Y. Identification of lung adenocarcinoma mutation status based on histologic subtype: Retrospective analysis of 269 patients. Thorac Cancer. 2016;7:17–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Sun Y, Yu X, Shi X, Hong W, Zhao J, Shi L. Correlation of survival and EGFR mutation with predominant histologic subtype according to the new lung adenocarcinoma classification in stage IB patients. World J Surg Oncol. 2014;12:148.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Hirsch FR, Jänne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Robert Pirker R, et al. Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013;8:373–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Shi Y, Au JSK, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9:154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA, et al. Exon19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res. 2006;12:3908–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Sasaki H, Shimizu S, Endo K, Takada M, Kawahara M, Tanaka H, et al. EGFR and erbB2 mutation status in japanese lung cancer patients. Int J Cancer. 2006;118:180–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu WS, Zhao LJ, Pang QS, Yuan ZY, Li B, Wang P. Prognostic value of epidermal growth factor receptor mutations in resected lung adenocarcinomas. Med Oncol. 2014;31:771.CrossRefPubMedGoogle Scholar
  29. 29.
    Kobayashi N, Toyooka S, Ichimura K, Soh J, Yamamoto H, Matsuo K, et al. Non-BAC component but not epidermal growth factor receptor gene mutation is associated with poor outcomes in small adenocarcinoma of the lung. J Thorac Oncol. 2008;3:704–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004;64:8919–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Lim KH, Huang MJ, Liu HC, Kuo HT, Tzen CY, Hsieh RK. Lack of prognostic value of EGFR mutations in primary resected non-small cell lung cancer. Med Oncol. 2007;24(4):388–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Nose N, Sugio K, Oyama T, Nozoe T, Uramoto H, Iwata T, et al. Association between estrogen receptor expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung. J Clin Oncol. 2008;27:411–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Thoracic SurgeryKanazawa Medical UniversityUchinadaJapan

Personalised recommendations