Advertisement

Medical Oncology

, 34:105 | Cite as

Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence

  • Biagio RicciutiEmail author
  • Marta Brambilla
  • Giulio Metro
  • Sara Baglivo
  • Roberta Matocci
  • Matteo Pirro
  • Rita Chiari
Review Article

Abstract

In the era of personalized medicine, the identification of targetable genetic alterations represented a major step forward in anticancer therapy. NTRK rearrangements represent the molecular driver of a subset of solid tumors, including 3% of non-small-cell lung cancers (NSCLCs). Preliminary data indicate that molecularly selected NSCLC patients harboring NTRK fusions derive an unprecedented clinical benefit from Trk-directed targeted therapies. The aim of this review is to describe the molecular biology of NTRK signaling pathway and to summarize the preclinical data on novel Trk inhibitors, touching upon the clinical development of these inhibitors for the treatment of advanced NSCLC, which have already shown encouraging anticancer activity and acceptable safety profile in early phase I clinical trials.

Keywords

NSCLC NTRK mutations Entrectinib LOXO-101 

Notes

Acknowledgements

Supported by the Italian Association for Cancer Research (AIRC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not required as this article does not contain any studies with human participants.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    American Cancer Society. Non-small cell lung cancer survival rates by stage. https://www.cancer.org/cancer/lungcancernonsmallcell/detaileddpfguide/non-small-cell-lung-cancer-survival-rates. Accessed 01 Feb 2017.
  3. 3.
    Passiglia F, Bronte G, Castiglia M, Listì A, Calò V, Toia F, et al. Prognostic and predictive biomarkers for targeted therapy in NSCLC: for whom the bell tolls? Expert Opin Biol Ther. 2015;15(11):1553–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.CrossRefPubMedGoogle Scholar
  5. 5.
    Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et al. First-SIGnaL: first-line single-agent Iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol. 2012;30(10):1122–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang JCH, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First line crizotinib versus chemotherapy in ALK positive lung cancer: results of a phase III study (PROFILE 1014). N Engl J Med. 2014;371:2167–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Soria JC, Tan DS, Chiari R, Wu YL, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Nokihara H, Hida T, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK inhibitor naive ALK-positive non-small cell lung cancer (ALK + NSCLC): Primary results from the J-ALEX study. J Clin Oncol. 2016;34(S5):9008 (abstract).Google Scholar
  13. 13.
    Califano R, Abidin A, Tariq NU, Economopoulou P, Metro G, Mountzios G. Beyond EGFR and ALK inhibition: unravelling and exploiting novel genetic alterations in advanced non small-cell lung cancer. Cancer Treat Rev. 2015;41(5):401–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19:1469–72.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK Fusion in a patient with Soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5:1049–57.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350:158–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–97.CrossRefPubMedGoogle Scholar
  19. 19.
    Loeb DM, Stephens RM, Copeland T, et al. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J Biol Chem. 1994;269:8901–10.PubMedGoogle Scholar
  20. 20.
    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1(2):e000023.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000;19:5729–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Tognon C, Garnett M, Kenward E, Kay R, Morrison K, Sorensen PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 2001;61:8909–16.PubMedGoogle Scholar
  26. 26.
    Edel MJ, Shvarts A, Medema JP, Bernards R. An in vivo functional genetic screen reveals a role for the TRK-T3 oncogene in tumor progression. Oncogene. 2004;23:4959–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 2014;111:10299–304.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okamura K, Harada T, Wang S, Ijichi K, Furuyama K, Koga T, et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer. 2012;78:100–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Varella-Garcia M, Kako S, Nguyen C, et al. FISHing TRK activation by gene rearrangements in non small cell lung cancer. J Thorac Oncol. 2015;10:9 (abstract: 3701).Google Scholar
  32. 32.
    Tatematsu T, Sasaki H, Shimizu S, Okuda K, Shitara M, Hikosaka Y, et al. Investigation of neurotrophic tyrosine kinase receptor 1 fusions and neurotrophic tyrosine kinase receptor family expression in non-small-cell lung cancer and sensitivity to AZD7451 in vitro. Mol Clin Oncol. 2014;2:725–30.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10(12):1670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Odate S, Nakamura K, Onishi H, Kojima M, Uchiyama A, Nakano K, et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer. 2013;79:205–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Odate S, Onishi H, Nakamura K, Kojima M, Uchiyama A, Kato M, et al. Tropomyosin-related kinase B inhibitor has potential for tumor regression and relapse prevention in pulmonary large cell neuroendocrine carcinoma. Anticancer Res. 2013;33:3699–703.PubMedGoogle Scholar
  36. 36.
    Anderson D, Ciomei M, Banfi P, Cribioli S, Ardini E, Galvani A, et al. Inhibition of Trk-driven tumors by the pan-Trk inhibitor RXDX-101. Eur J Cancer. 2014;50(Supplement 6):101.CrossRefGoogle Scholar
  37. 37.
    Ardini E, Menichincheri M, De Ponti C, et al. Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol Cancer Ther. 2009;8(12 suppl):A244.CrossRefGoogle Scholar
  38. 38.
    Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK Fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5(10):1049–57.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, et al. TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene. 2013;32:10–3698.CrossRefGoogle Scholar
  40. 40.
    Tatematsu T, Sasaki H, Shimizu S, Okuda K, Shitara M, Hikosaka Y, et al. Investigation of neurotrophic tyrosine kinase receptor 1 fusions and neurotrophic tyrosine kinase receptor family expression in non-small-cell lung cancer and sensitivity to AZD7451 in vitro. Mol Clin Oncol. 2014;2(5):725–30.PubMedPubMedCentralGoogle Scholar
  41. 41.
    De Braud FG, Niger M, Damian S, Bardazza B, Martinetti A, Pelosi G, et al. Alka-372-001: first-in-human, phase I study of entrectinib—an oral pan-trk, ROS1, and ALK inhibitor—in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 2015;33(suppl; abstr 2517).Google Scholar
  42. 42.
    Patel MR, Bauer TM, Liu SV, Drilon AE, Wheler JJ, Shaw AT, et al. STARTRK-1: phase 1/2a study of entrectinib, an oral Pan-Trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 2015; 33(suppl; abstr 2596).Google Scholar
  43. 43.
    Burris HA, Brose MS, Shaw AT, Bauer TM, Farago AF, Doebele RC, et al. A first-in-human study of LOXO-101, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. J Clin Oncol 2015;33(suppl; abstr TPS2624).Google Scholar
  44. 44.
    Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 2014;111(28):10299–304.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Russo M, Misale S, Wei G, Siravegna G, Crisafulli G, Lazzari L, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016;6:36–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Biagio Ricciuti
    • 1
    Email author
  • Marta Brambilla
    • 1
  • Giulio Metro
    • 1
  • Sara Baglivo
    • 1
  • Roberta Matocci
    • 1
  • Matteo Pirro
    • 2
  • Rita Chiari
    • 1
  1. 1.Department of Medical OncologySanta Maria della Misericordia Hospital, Azienda Ospedaliera di PerugiaPerugiaItaly
  2. 2.Department of MedicineUniversity of PerugiaPerugiaItaly

Personalised recommendations