Advertisement

Medical Oncology

, 34:53 | Cite as

Minimally invasive treatments of painful bone lesions: state of the art

  • Antonio BarileEmail author
  • Francesco Arrigoni
  • Luigi Zugaro
  • Marcello Zappia
  • Roberto Luigi Cazzato
  • Julien Garnon
  • Nitin Ramamurthy
  • Luca Brunese
  • Afshin Gangi
  • Carlo Masciocchi
Original Paper
Part of the following topical collections:
  1. New Advances in Interventional Oncology: State of the Art

Abstract

The role of the interventional radiology (IR) in the musculoskeletal system, and in particular in the bone, is a field of knowledge that is growing significantly in the last years with indications for treatment of both benign and malign lesions. In this paper, we review the state of the art of this application of the IR in the bone (bone metastasis and benign bone lesions) with discussion about all the techniques today used.

Keywords

Interventional radiology Painful bone lesions RFA Microwaves MRgFUS Embolization Laser Bone pain management Bone metastasis 

Notes

Acknowledgements

Angela Martella is kindly acknowledged for translation of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical standards

All procedures performed in this study were in accordance with the Helsinki Declaration and its later amendments; an informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Salvati F, Rossi F, Limbucci N, Pistoia ML, Barile A, Masciocchi C. Mucoid metaplastic-degeneration of anterior cruciate ligament. J Sports Med Phys Fitness. 2008;48(4):483–7.PubMedGoogle Scholar
  2. 2.
    Ripani M, Continenza MA, Cacchio A, Barile A, Parisi A, et al. The ischiatic region: normal and MRI anatomy. J Sports Med Phys Fitness. 2006;46(3):468–75.PubMedGoogle Scholar
  3. 3.
    Barile A, Lanni G, Conti L, Mariani S, Calvisi V, Castagna A, et al. Lesions of the biceps pulley as cause of anterosuperior impingement of the shoulder in the athlete: potentials and limits of MR arthrography compared with arthroscopy. Radiol Med. 2013;118(1):112–22. doi: 10.1007/s11547-012-0838-2.CrossRefPubMedGoogle Scholar
  4. 4.
    Zappia M, Reginelli A, Russo A, D’Agosto GF, Di Pietto F, Genovese EA, et al. Long head of the biceps tendon and rotator interval. Musculoskelet Surg. 2013;97(Suppl 2):S99–108. doi: 10.1007/s12306-013-0290-z.CrossRefPubMedGoogle Scholar
  5. 5.
    Masciocchi C, Barile A, Lelli S, Calvisi V. Magnetic resonance imaging (MRI) and arthro-MRI in the evaluation of the chondral pathology of the knee joint. Radiol Med. 2004;108(3):149–58.PubMedGoogle Scholar
  6. 6.
    Splendiani A, Perri M, Grattacaso G, Di Tunno V, Marsecano C, Panebianco L, et al. Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med. 2016;121(1):38–44. doi: 10.1007/s11547-015-0570-9.CrossRefPubMedGoogle Scholar
  7. 7.
    Splendiani A, Ferrari F, Barile A, Masciocchi C, Gallucci M. Occult neural foraminal stenosis caused by association between disc degeneration and facet joint osteoarthritis: demonstration with dedicated upright MRI system. Radiol Med. 2014;119(3):164–74. doi: 10.1007/s11547-013-0330-7.CrossRefPubMedGoogle Scholar
  8. 8.
    Barile A, Limbucci N, Splendiani A, Gallucci M, Masciocchi C. Spinal injury in sport. Eur J Radiol. 2007;62(1):68–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Caranci F, Tedeschi E, Leone G, Reginelli A, Gatta G, Pinto A, et al. Errors in neuroradiology. Radiol Med. 2015;120(9):795–801. doi: 10.1007/s11547-015-0564-7.CrossRefPubMedGoogle Scholar
  10. 10.
    Masciocchi C, Lanni G, Conti L, Conchiglia A, Fascetti E, Flamini S, et al. Soft-tissue inflammatory myofibroblastic tumors (IMTs) of the limbs: potential and limits of diagnostic imaging. Skeletal Radiol. 2012;41(6):643–9. doi: 10.1007/s00256-011-1263-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Barile A, Regis G, Masi R, Maggiori M, Gallo A, Faletti C, et al. Musculoskeletal tumours: preliminary experience with perfusion MRI. Radiol Med. 2007;112(4):550–61 (English, Italian).CrossRefPubMedGoogle Scholar
  12. 12.
    Aliprandi A, Di Pietto F, Minafra P, Zappia M, Pozza S, Sconfienza LM. Femoro-acetabular Impingement: what the general radiologist should know. Radiol Med. 2014;119(2):103–12. doi: 10.1007/s11547-013-0314-7.CrossRefPubMedGoogle Scholar
  13. 13.
    Rossi S, Fornari F, Pathies C, Buscarini L. Thermal lesions induced by 480 KHz localized current field in guinea pig and pig liver. Tumori. 1990;76(1):54–7.PubMedGoogle Scholar
  14. 14.
    McGahan JP, Brock JM, Tesluk H, Gu WZ, Schneider P, Browning PD. Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol. 1992;3(2):291–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Tatli S, Tapan U, Morrison PR, Silverman SG. Radiofrequency ablation: technique and clinical applications. Diagnostic and Interventional Radiology. 2011;. doi: 10.4261/1305-3825.DIR.5168-11.1.PubMedGoogle Scholar
  16. 16.
    Brace CL. Microwave Tissue Ablation: Biophysics, Technology and Applications. Crit Rev Biomed Eng. 2010;38(1):65–78.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zoccali C, Rossi B, Zoccali G, Barbarino E, Gregori L, Barile A, et al. A new technique for biopsy of soft tissue neoplasms: a preliminary experience using MRI to evaluate bleeding. Min Med. 2015;106(2):117–20.Google Scholar
  18. 18.
    Floridi C, Radaelli A, Abi-Jaoudeh N, Grass M, Lin M, Chiaradia M, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med. 2014;119(7):521–32. doi: 10.1007/s11547-014-0429-5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carrafiello G, Fontana F, Cotta E, Petullà M, Brunese L, Mangini M, et al. Ultrasound-guided thermal radiofrequency ablation (RFA) as an adjunct to systemic chemotherapy for breast cancer liver metastases. Radiol Med. 2011;116(7):1059–66. doi: 10.1007/s11547-011-0697-2.CrossRefPubMedGoogle Scholar
  20. 20.
    Cazzato RL, Garnon J, Ramamurthy N, Koch G, Tsoumakidou G, Caudrelier J, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol. 2016;33(12):140.CrossRefPubMedGoogle Scholar
  21. 21.
    Carrafiello G, Fontana F, Mangini M, Ierardi AM, Cotta E, Floridi C, et al. Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med. 2012;117(8):1386–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Briganti F, Napoli M, Leone G, Marseglia M, Mariniello G, et al. Treatment of intracranial aneurysms by flow diverter devices: long-term results from a single center. Eur J Radiol. 2014;83(9):1683–90. doi: 10.1016/j.ejrad.2014.05.029.CrossRefPubMedGoogle Scholar
  23. 23.
    Carrafiello G, Laganà D, Mangini M, Fontana F, Dionigi G, Boni L, et al. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. International Journal of Surgery. 2008;6:S65–9. doi: 10.1016/j.ijsu.2008.12.028.CrossRefPubMedGoogle Scholar
  24. 24.
    Gangi A. Percutaneous Bone Tumor Management. Semin Interv Radiol. 2010;. doi: 10.1055/s-0030-1253511.Google Scholar
  25. 25.
    Rose PS, Morris JM. Cryosurgery/cryoablation in musculoskeletal neoplasms: history and state of the art. Curr Rev Musculoskelet Med. 2015;8(4):353–60. doi: 10.1007/s12178-015-9307-6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ringe KI, Panzica M, von Falck C. Thermoablation of Bone Tumors. Rofo. 2016;188(6):539–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Napoli A, Anzidei M, Ciolina F, Marotta E, Cavallo Marincola B, Brachetti G, et al. MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Interv Radiol. 2013;36(5):1190–203. doi: 10.1007/s00270-013-0592-4.CrossRefGoogle Scholar
  28. 28.
    Arrigoni F, Gregori LM, Zugaro L, Barile A, Masciocchi C. MRgFUS in the treatment of MSK lesions: a review based on the experience of the University of L’Aquila, Italy. Transl Cancer Res. 2014;. doi: 10.3978/j.issn.2218-676X.2014.10.04.Google Scholar
  29. 29.
    Masciocchi C, Conchiglia A, Gregori LM, Arrigoni F, Zugaro L, Barile A. Critical role of HIFU in musculoskeletal interventions. Radiol Med (Torino). 2014;. doi: 10.1007/s11547-014-0414-z.Google Scholar
  30. 30.
    Odisio BC. Wallace MJ Image-guided interventions in oncology. Surg Oncol Clin N Am. 2014;23(4):937–55. doi: 10.1016/j.soc.2014.06.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Barile A, La Marra A, Arrigoni F, Mariani S, Zugaro L, Splendiani A, et al. Anaesthetics, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol. 2016;. doi: 10.1259/bjr.20150355.Google Scholar
  32. 32.
    Kurup AN, Callstrom MR. Ablation of musculoskeletal Metastases_ Pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol. 2013;16(4):253–61. doi: 10.1053/j.tvir.2013.08.007.CrossRefPubMedGoogle Scholar
  33. 33.
    Masciocchi C, Arrigoni F, La Marra A, Mariani S, Zugaro L, Barile A. Treatment of focal benign lesions of the bone: MRgFUS and RFA. Br J Radiol. 2016;89:20150356.CrossRefPubMedGoogle Scholar
  34. 34.
    Helms CA. “Don’t touch” lesions. In: Helms CA, editor. Fundamentals of Skeletal Radiology. 4th ed. Philadalphia: Elsevier; 2014.Google Scholar
  35. 35.
    Pellerin O, Medioni J, Vulser C, Déan C, Oudard S, Sapoval M. Management of painful pelvic bone metastasis of renal cell carcinoma using embolization, radio-frequency ablation, and cementoplasty: a prospective evaluation of efficacy and safety. Cardiovasc Interv Radiol. 2014;37(3):730–6. doi: 10.1007/s00270-013-0740-x.CrossRefGoogle Scholar
  36. 36.
    Carrafiello G, Dionigi G, Boni L, Mangini M, Ierardi AM, Piacentino F, et al. Current role of interventions in metastatic kidney tumors: single center experience. Updates Surg. 2011;63(4):259–69. doi: 10.1007/s13304-011-0118-z.CrossRefPubMedGoogle Scholar
  37. 37.
    Chatziioannou AN, Johnson ME, Pneumaticos SG, Lawrence DD, Carrasco CH. Preoperative embolization of bone metastases from renal cell carcinoma. Eur Radiol. 2000;10(4):593–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Son HY, Kim EY, Ahn SB, Lee BC. Selective embolization for hypervascular metastasis from differentiated thyroid cancer: a case series. J Med Case Rep. 2014;8:405. doi: 10.1186/1752-1947-8-405.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Smit JW, Links TP, Hew JM, Goslings BM, Vielvoye GJ, Vermey A. Embolization of skeletal metastases in patients with differentiated thyroid carcinoma. Ned Tijdschr Geneeskd. 2000;144(29):1406–10.PubMedGoogle Scholar
  40. 40.
    Owen R. Embolization of Musculoskeletal Bone Tumors. Semin Interv Radiol. 2010;27(02):111–23. doi: 10.1055/s-0030-1253510.CrossRefGoogle Scholar
  41. 41.
    Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Interv Radiol. 2010;33(4):706–13. doi: 10.1007/s00270-009-9738-9.CrossRefGoogle Scholar
  42. 42.
    Filippiadis DK, Tutton S, Mazioti A, Kelekis A. Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging. 2014;5:339–46. doi: 10.1594/essr2013/P-O127.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nazario J, Hernandez J, Tam AL. Thermal ablation of painful bone metastases. Techn Vasc Interv Radiol. 2011;14(3):150–9. doi: 10.1053/j.tvir.2011.02.007.CrossRefGoogle Scholar
  44. 44.
    Johnstone C, Lutz ST. External beam radiotherapy and bone metastases. Ann Palliat Med. 2014;3(2):114–22.PubMedGoogle Scholar
  45. 45.
    Smith HS. Painful osseous metastases. Pain Phys. 2011;14(4):E373–403.Google Scholar
  46. 46.
    Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Middlemiss T, Laird BJ, Fallon MT. Mechanisms of cancer-induced bone pain. Clin Oncol (R Coll Radiol). 2011;23(6):387–92.CrossRefGoogle Scholar
  48. 48.
    Van der Linden YM, Lok JJ, Steenland E, et al. Single fraction radiotherapy is efficacious: a further analysis of the Dutch Bone Metastasis Study controlling for the influence of retreatment. Int J Radiat Oncol Biol Phys. 2004;59:528–37.CrossRefPubMedGoogle Scholar
  49. 49.
    Callstrom MR, Charboneau JW, Goetz MP, Rubin J, Wong GY, Sloan JA, et al. Painful metastases involving bone: feasibility of percutaneous CT and US-guided radio-frequency ablation. Radiology. 2002;224:87–97.CrossRefPubMedGoogle Scholar
  50. 50.
    Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multi-center study. J Clin Oncol. 2004;22:300–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, Ahrar K, et al. Percutaneous radiofrequency ablation of painful osseous metastases. Cancer. 2010;116(4):989–97. doi: 10.1002/cncr.24837.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Di Staso M, Zugaro L, Gravina GL, Bonfili P, Marampon F, Di Nicola L, et al. A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. Eur Radiol. 2011;21(9):2004–10. doi: 10.1007/s00330-011-2133-3.CrossRefPubMedGoogle Scholar
  53. 53.
    Di Staso M, Gravina GL, Zugaro L, Bonfili P, Gregori L, Franzese P, et al. Treatment of solitary painful osseous metastases with radiotherapy, cryoablation or combined therapy: propensity Matching analysis in 175 patients. PLoS ONE. 2015;10(6):e0129021. doi: 10.1371/journal.pone.0129021.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, et al. Percutaneous image-guided cryoablation of painful metastases involving bone. Cancer. 2012;119(5):1033–41. doi: 10.1002/cncr.27793.CrossRefPubMedGoogle Scholar
  55. 55.
    Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, et al. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases–preliminary clinical experience. Ann Oncol Off J Eur Soc Med Oncol. 2007;18(1):163–7. doi: 10.1093/annonc/mdl335.CrossRefGoogle Scholar
  56. 56.
    Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound. Radiology. 2008;249(1):355–63. doi: 10.1148/radiol.2491071523.CrossRefPubMedGoogle Scholar
  57. 57.
    Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6. doi: 10.1245/s10434-008-0011-2.CrossRefPubMedGoogle Scholar
  58. 58.
    Napoli A, Anzidei M, Cavallo Marincola B, Brachetti G, Ciolina F, Cartocci G, et al. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Investig Radiol. 2013;48(6):351–8. doi: 10.1097/RLI.0b013e318285bbab.CrossRefGoogle Scholar
  59. 59.
    Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.CrossRefPubMedGoogle Scholar
  60. 60.
    Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8(6):378–82.PubMedGoogle Scholar
  61. 61.
    McMenomy BP, Kurup AN, Johnson GB, Carter RE, McWilliams RR, Markovic SN, et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol. 2013;24(2):207–13. doi: 10.1016/j.jvir.2012.10.019.CrossRefPubMedGoogle Scholar
  62. 62.
    Pusceddu C, Sotgia B, Fele RM, Ballicu N, Melis L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc Interv Radiol. 2016;39:74–80. doi: 10.1007/s00270-015-1151-y.CrossRefGoogle Scholar
  63. 63.
    Sun G, Jin P, Liu X-W, Li M, Li L. Cementoplasty for managing painful bone metastases outside the spine. Eur Radiol. 2013;24(3):731–7. doi: 10.1007/s00330-013-3071-z.CrossRefPubMedGoogle Scholar
  64. 64.
    Cazzato LR, Palussiere J, Buy X, Denaro V, Santini D, Tonini G, et al. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc Interv Radiol. 2015;38(6):1563–72. doi: 10.1007/s00270-015-1082-7.CrossRefGoogle Scholar
  65. 65.
    Rosenthal DI, Alexander A, Rosenberg AE, Spriengfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183(1):29–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Chai JW, Hong SH, Choi J-Y, Koh YH, Lee JW, Choi J-A, Kang HS. Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. RadioGraphics. 2010;30(3):737–49. doi: 10.1148/rg.303095120.CrossRefPubMedGoogle Scholar
  67. 67.
    Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11(4):671–96.CrossRefPubMedGoogle Scholar
  68. 68.
    Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5. doi: 10.1148/radiol.2291021053.CrossRefPubMedGoogle Scholar
  69. 69.
    Rehnitz C, Sprengel SD, Lehner B, Ludwig K, Omlor G, Merle C, et al. CT-guided radiofrequency ablation of osteoid osteoma: correlation of clinical outcome and imaging features. Diagn Interv Radiol. 2013;. doi: 10.5152/dir.2013.096.PubMedGoogle Scholar
  70. 70.
    Rimondi E, Mavrogenis AF, Rossi G, Ciminari R, Malaguti C, Tranfaglia C, et al. Radiofrequency ablation for non-spinal osteoid osteomas in 557 patients. Eur Radiol. 2011;22(1):181–8. doi: 10.1007/s00330-011-2240-1.CrossRefPubMedGoogle Scholar
  71. 71.
    Campanacci M, Ruggieri P, Gasbarrini A, Ferraro A, Campanacci L. Osteoid osteoma direct visual identification and intralesional excision of the nidus with minimal removal of bone. J Bone Joint Surg Br. 1999;81:814–20.CrossRefPubMedGoogle Scholar
  72. 72.
    Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology. 2007;242(1):293–301.CrossRefPubMedGoogle Scholar
  73. 73.
    Etienne A, Waynberger É, Druon J. Interstitial laser photocoagulation for the treatment of osteoid osteoma: retrospective study on 35 cases. Diagn Interv Imaging. 2013;94(3):300–10. doi: 10.1016/j.diii.2012.11.002.CrossRefPubMedGoogle Scholar
  74. 74.
    Napoli A, Mastantuono M, Cavallo Marincola B, Anzidei M, Zaccagna F, Moreschini O, et al. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology. 2013;267(2):514–21. doi: 10.1148/radiol.13120873.CrossRefPubMedGoogle Scholar
  75. 75.
    Geiger D, Napoli A, Conchiglia A, Gregori LM, Arrigoni F, Bazzocchi A, et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am. 2014;96(9):743–51. doi: 10.2106/JBJS.M.00903.CrossRefPubMedGoogle Scholar
  76. 76.
    Masciocchi C, Zugaro L, Arrigoni F, Gravina GL, Mariani S, La Marra A, et al. Radiofrequency ablation versus magnetic resonance guided focused ultrasound surgery for minimally invasive treatment of osteoid osteoma: a propensity score matching study. Eur Radiol. 2016;26:2472–81. doi: 10.1007/s00330-015-4111-7.CrossRefPubMedGoogle Scholar
  77. 77.
    Lucas DR. Osteoblastoma. Arch Pathol Lab Med. 2010;134:1460–6.PubMedGoogle Scholar
  78. 78.
    Papaioannou G, Sebire NJ, McHugh K. Imaging of the unusual pediatric ‘blastomas’. Cancer Imaging. 2009;9:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol. 2014;18:280–99.CrossRefPubMedGoogle Scholar
  80. 80.
    Rehnitz C, Sprengel SD, Lehner B, Ludwig K, Omlor G, Merle C, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol. 2012;81(11):3426–34. doi: 10.1016/j.ejrad.2012.04.037.CrossRefPubMedGoogle Scholar
  81. 81.
    Weber MA, Sprengel SD, Omlor GW, Lehner B, Wiedenhöfer B, Kauczor HU, et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol. 2015;44:981–93.CrossRefPubMedGoogle Scholar
  82. 82.
    Erickson JK, Rosenthal DI, Zaleske DJ, Gebhardt MC, Cates JM. Primary Treatment of chondroblastoma with percutaneous radio-frequency heat ablation: report of three cases1. Radiology. 2001;221(2):463–8. doi: 10.1148/radiol.2212010262.CrossRefPubMedGoogle Scholar
  83. 83.
    Petsas T, Megas P, Papathanassiou Z. Radiofrequency ablation of two femoral head chondroblastomas. Eur J Radiol. 2007;63(1):63–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Farfalli GL, Slullitel PA, Muscolo DL, Ayerza MA, Aponte-Tinao LA. What happens to the articular surface after curettage for epiphyseal chondroblastoma? A report on functional results, arthritis, and arthroplasty. Clin Orthop Relat Res. 2017;475(3):760–6. doi: 10.1007/s11999-016-4715-5.CrossRefPubMedGoogle Scholar
  85. 85.
    Aponte-Tinao L, Ayerza MA, Muscolo DL, Farfalli GL. Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteosarcoma of the knee. Clin Orthop Relat Res. 2015;473(5):1789–96. doi: 10.1007/s11999-014-4028-5.CrossRefPubMedGoogle Scholar
  86. 86.
    Zheng K, Yu X, Xu S, Xu M. Periosteal chondroma of the femur: a case report and review of the literature. Oncol Lett. 2015;. doi: 10.3892/ol.2015.2889.Google Scholar
  87. 87.
    Bauer TW, Dorfman HD. Intraosseous ganglion. A clinicopathologic study of 11 cases. Am J Surg Pathol. 1982;6:207–13.CrossRefPubMedGoogle Scholar
  88. 88.
    Corby RR, Stacy GS, Peabody TD, et al. Radiofrequency ablation of solitary eosinophilic granuloma of bone. Am J Roentgenol. 2008;190:1492–4.CrossRefGoogle Scholar
  89. 89.
    Kujak JL, Liu PT, Johnson GB, et al. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors. Skelet Radiol. 2010;39:175–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Antonio Barile
    • 1
    Email author
  • Francesco Arrigoni
    • 1
  • Luigi Zugaro
    • 1
  • Marcello Zappia
    • 2
  • Roberto Luigi Cazzato
    • 3
  • Julien Garnon
    • 3
  • Nitin Ramamurthy
    • 4
  • Luca Brunese
    • 2
  • Afshin Gangi
    • 3
  • Carlo Masciocchi
    • 1
  1. 1.Diagnostic and Interventional Radiology, Department of Applied Clinical Science and BiotechnologyUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Medicine and Health Science “V. Tiberio”University of MoliseCampobassoItaly
  3. 3.Department of Interventional RadiologyNouvel Hôpital Civil (Hôpitaux Universitaires de Strasbourg)StrasbourgFrance
  4. 4.Department of RadiologyNorfolk and Norwich University HospitalNorwichUK

Personalised recommendations