Medical Oncology

, 34:48 | Cite as

Pharmacogenomics of platinum-based chemotherapy in non-small cell lung cancer: focusing on DNA repair systems

Review Article

Abstract

Drug therapy for non-small cell lung cancer consists mainly of platinum-based chemotherapy regimens. However, toxicity, drug resistance, and high risk of death have been seen in the clinic, which means there is a need for optimizing the use of medications. Platinum resistance could be mediated by a series of DNA repair pathways, and therefore, these pathways should be taken into account for optimizing drug using. The goal of pharmacogenomics is to elucidate genetic factors, such as DNA repair genes, which might underlie drug efficacy and effectiveness, and to improve therapeutic effects or guide personalized therapy as well. Here, we reviewed the current knowledge of pharmacogenomic data on DNA repair systems and examined whether they could be further translated into the clinic with evidence-based perspectives.

Keywords

DNA repair pathway(s) Cisplatin Drug response Survival Single nucleotide polymorphism(s) 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81573463), Hunan Provincial Natural Science Foundation of China Grant No. (2015JJ1024), and Innovation Project of Central South University (ZY2016764).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382(9893):709–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Khuri FR. Lung cancer and other pulmonary neoplasms. In: Lee G, Andrew IS, editors. Goldman-cecil medicine. 25th ed. New York: Saunders; 2016. p. 1303–13.Google Scholar
  3. 3.
    Tieche CC, Peng RW, Dorn P, Froment L, Schmid RA, Marti TM. Prolonged pemetrexed pretreatment augments persistence of cisplatin-induced DNA damage and eliminates resistant lung cancer stem-like cells associated with EMT. BMC Cancer. 2016;16(1):125.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016. J Natl Compr Cancer Netw. 2016;14(3):255–64.Google Scholar
  5. 5.
    Kuribayashi K, Funaguchi N, Nakano T. Chemotherapy for advanced non-small cell lung cancer with a focus on squamous cell carcinoma. J Cancer Res Ther. 2016;12(2):528–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Macerelli M, Ganzinelli M, Gouedard C, Broggini M, Garassino MC, Linardou H, et al. Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer? Cancer Treat Rev. 2016;48:8–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–46.CrossRefPubMedGoogle Scholar
  8. 8.
    D’Antonio C, Milano A, Righini R, Onesti CE, Bassanelli M, Falcone R, et al. Pharmacogenomics in lung cancer chemotherapy: a review of what the oncologist should know. Anticancer Res. 2014;34(10):5241–50.PubMedGoogle Scholar
  9. 9.
    Hildebrandt MA, Gu J, Wu X. Pharmacogenomics of platinum-based chemotherapy in NSCLC. Expert Opin Drug Metabol Toxicol. 2009;5(7):745–55.CrossRefGoogle Scholar
  10. 10.
    Postel-Vinay S, Vanhecke E, Olaussen KA, Lord CJ, Ashworth A, Soria JC. The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat Rev Clin Oncol. 2012;9(3):144–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet. 2012;14(1):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jalal S, Earley JN, Turchi JJ. DNA repair: from genome maintenance to biomarker and therapeutic target. Clin Cancer Res. 2011;17(22):6973–84.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bonanno L, Favaretto A, Rosell R. Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer Res. 2014;34(1):493–501.PubMedGoogle Scholar
  15. 15.
    Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193–204.CrossRefPubMedGoogle Scholar
  18. 18.
    Choi JY, Park JM, Yi JM, Leem SH, Kang TH. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents. Oncotarget. 2015;6(26):22575–86.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cleaver JE, Lam ET, Revet I. DNA repair: from genome maintenance to biomarker and therapeutic target. Nat Rev Genet. 2009;10(11):756–68.CrossRefPubMedGoogle Scholar
  20. 20.
    Altaha R, Liang X, Yu JJ, Reed E. Excision repair cross complementing-group 1: gene expression and platinum resistance. Int J Mol Med. 2004;14(6):959–70.PubMedGoogle Scholar
  21. 21.
    Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol. 2000;60(9):1305–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Tiseo M, Bordi P, Bortesi B, Boni L, Boni C, Baldini E, et al. ERCC1/BRCA1 expression and gene polymorphisms as prognostic and predictive factors in advanced NSCLC treated with or without cisplatin. Br J Cancer. 2013;108(8):1695–703.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355(10):983–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Ren S, Zhou S, Zhang L, Xu J, Lv M, Zhang J, et al. High-level mRNA of excision repair cross-complementation group 1 gene is associated with poor outcome of platinum-based doublet chemotherapy of advanced nonsmall cell lung cancer patients. Cancer Investig. 2010;28(10):1078–83.CrossRefGoogle Scholar
  25. 25.
    Friboulet L, Olaussen KA, Pignon JP, Shepherd FA, Tsao MS, Graziano S, et al. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N Engl J Med. 2013;368(12):1101–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liao WY, Shih JY, Chang GC, Cheng YK, Yang JC, Chen YM, et al. Genetic polymorphism of XRCC1 Arg399Gln is associated with survival in non-small-cell lung cancer patients treated with gemcitabine/platinum. J Thorac Oncol. 2012;7(6):973–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Mlak R, Krawczyk P, Ramlau R, Kalinka-Warzocha E, Wasylecka-Morawiec M, Wojas-Krawczyk K, et al. Predictive value of ERCC1 and RRM1 gene single-nucleotide polymorphisms for first-line platinum- and gemcitabine-based chemotherapy in non-small cell lung cancer patients. Oncol Rep. 2013;30(5):2385–98.PubMedGoogle Scholar
  28. 28.
    Ludovini V, Floriani I, Pistola L, Minotti V, Meacci M, Chiari R, et al. Association of cytidine deaminase and xeroderma pigmentosum group D polymorphisms with response, toxicity, and survival in cisplatin/gemcitabine-treated advanced non-small cell lung cancer patients. J Thorac Oncol. 2011;6(12):2018–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Du Y, Su T, Zhao L, Tan X, Chang W, Zhang H, et al. Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer. PLoS ONE. 2014;9(6):e99843.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Su D, Ma S, Liu P, Jiang Z, Lv W, Zhang Y, et al. Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer. 2007;56(2):281–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Mathiaux J, Le Morvan V, Pulido M, Jougon J, Begueret H, Robert J. Role of DNA repair gene polymorphisms in the efficiency of platinum-based adjuvant chemotherapy for non-small cell lung cancer. Mol Diagn Ther. 2011;15(3):159–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Li D, Zhou Q, Liu Y, Yang Y, Li Q. DNA repair gene polymorphism associated with sensitivity of lung cancer to therapy. Med Oncol. 2012;29(3):1622–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Shiraishi K, Kohno T, Tanai C, Goto Y, Kuchiba A, Yamamoto S, et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2010;28(33):4945–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Wei SZ, Zhan P, Shi MQ, Shi Y, Qian Q, Yu LK, et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med Oncol. 2011;28(1):315–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Wei HB, Hu J, Shang LH, Zhang YY, Lu FF, Wei M, et al. A meta-analytic review of ERCC1/MDR1 polymorphism and chemosensitivity to platinum in patients with advanced non-small cell lung cancer. Chin Med J (Engl). 2012;125(16):2902–7.Google Scholar
  36. 36.
    Yu D, Shi J, Sun T, Du X, Liu L, Zhang X, et al. Pharmacogenetic role of ERCC1 genetic variants in treatment response of platinum-based chemotherapy among advanced non-small cell lung cancer patients. Tumour Biol. 2012;33(3):877–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Yin JY, Huang Q, Zhao YC, Zhou HH, Liu ZQ. Meta-analysis on pharmacogenetics of platinum-based chemotherapy in non small cell lung cancer (NSCLC) patients. PLoS ONE. 2012;7(6):e38150.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang D, Zhou Y. Nucleotide excision repair gene polymorphisms and prognosis of non-small cell lung cancer patients receiving platinum-based chemotherapy: a meta-analysis based on 44 studies. Biomed Rep. 2014;2(4):452–62.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu TP, Shen H, Liu LX, Shu YQ. Association of ERCC1-C118T and -C8092A polymorphisms with lung cancer risk and survival of advanced-stage non-small cell lung cancer patients receiving platinum-based chemotherapy: a pooled analysis based on 39 reports. Gene. 2013;526(2):265–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Yin JY, Li X, Zhou HH, Liu ZQ. Pharmacogenomics of platinum-based chemotherapy sensitivity in NSCLC: toward precision medicine. Pharmacogenomics. 2016;17(12):1365–78.CrossRefPubMedGoogle Scholar
  41. 41.
    Sullivan I, Salazar J, Majem M, Pallares C, Del RE, Paez D, et al. Pharmacogenetics of the DNA repair pathways in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Lett. 2014;353(2):160–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Huang SJ, Wang YF, Jin ZY, Sun JY, Guo ZL. Role of ERCC1 variants in response to chemotherapy and clinical outcome of advanced non-small cell lung cancer. Tumour Biol. 2014;35(5):4023–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4(1):18.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Aloyz R, Xu ZY, Bello V, Bergeron J, Han FY, Yan Y, et al. Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res. 2002;62(19):5457–62.PubMedGoogle Scholar
  45. 45.
    Au WW, Salama SA, Sierra-Torres CH. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect. 2003;111(15):1843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Joerger M, Burgers SA, Baas P, Smit EF, Haitjema TJ, Bard MP, et al. Germline polymorphisms in patients with advanced nonsmall cell lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study. Cancer. 2012;118(9):2466–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Provencio M, Camps C, Cobo M, De Las PR, Massuti B, Blanco R, et al. Prospective assessment of XRCC3, XPD and Aurora kinase A single-nucleotide polymorphisms in advanced lung cancer. Cancer Chemother Pharmacol. 2012;70(6):883–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Vinolas N, Provencio M, Reguart N, Cardenal F, Alberola V, Sanchez-Torres JM, et al. Single nucleotide polymorphisms in MDR1 gen correlates with outcome in advanced non-small-cell lung cancer patients treated with cisplatin plus vinorelbine. Lung Cancer. 2011;71(2):191–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou M, Ding YJ, Feng Y, Zhang QR, Xiang Y, Wan HY. Association of xeroderma pigmentosum group D (Asp312Asn, Lys751Gln) and cytidine deaminase (Lys27Gln, Ala70Thr) polymorphisms with outcome in Chinese non-small cell lung cancer patients treated with cisplatin-gemcitabine. Genet Mol Res. 2014;13(2):3310–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Li P, Wang Y, Cheng J, Chen J, Ha M. Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen. Tumor Biol. 2015;36(12):9465–73.CrossRefGoogle Scholar
  51. 51.
    Qin Q, Zhang C, Yang X, Zhu H, Yang B, Cai J, et al. Polymorphisms in XPD gene could predict clinical outcome of platinum-based chemotherapy for non-small cell lung cancer patients: a meta-analysis of 24 studies. PLoS ONE. 2013;8(11):e79864.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Qiu M, Yang X, Hu J, Ding X, Jiang F, Yin R, et al. Predictive value of XPD polymorphisms on platinum-based chemotherapy in non-small cell lung cancer: a systematic review and meta-analysis. PLoS ONE. 2013;8(8):e72251.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li XD, Han JC, Zhang YJ, Li HB, Wu XY. Common variations of DNA repair genes are associated with response to platinum-based chemotherapy in NSCLCs. Asian Pac J Cancer Prev. 2013;14(1):145–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu W, Li H, Wang H, Zhao X, Gao Z, Qiao R, et al. Effect of polymorphisms in XPD on clinical outcomes of platinum-based chemotherapy for Chinese non-small cell lung cancer patients. PLoS ONE. 2012;7(3):e33200.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen X, Sun H, Ren S, Kim CV, Zhang L, Zhou S, et al. Association of XRCC3 and XPD751 SNP with efficacy of platinum-based chemotherapy in advanced NSCLC patients. Clin Transl Oncol. 2012;14(3):207–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Bowden NA. Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy? Cancer Lett. 2014;346(2):163–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu D, Wu J, Shi GY, Zhou HF, Yu Y. Role of XRCC1 and ERCC5 polymorphisms on clinical outcomes in advanced non-small cell lung cancer. Genet Mol Res. 2014;13(2):3100–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Jin ZY, Zhao XT, Zhang LN, Wang Y, Yue WT, Xu SF. Effects of polymorphisms in the XRCC1, XRCC3, and XPG genes on clinical outcomes of platinum-based chemotherapy for treatment of non-small cell lung cancer. Genet Mol Res. 2014;13(3):7617–25.CrossRefPubMedGoogle Scholar
  59. 59.
    Yuli Y, Zhe S, Xia W, Siqing L, Zhenxuan W, Yu-Hua Z, et al. XPG is a novel biomarker of clinical outcome in advanced non-small-cell lung cancer. Pak J Med Sci. 2013;29(3):762–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang T, Sun J, Lv M, Zhang L, Wang X, Ren JC, et al. XPG is predictive gene of clinical outcome in advanced non-small-cell lung cancer with platinum drug therapy. Asian Pac J Cancer Prev. 2013;14(2):701–5.CrossRefPubMedGoogle Scholar
  61. 61.
    He C, Duan Z, Li P, Xu Q, Yuan Y. Role of ERCC5 promoter polymorphisms in response to platinum-based chemotherapy in patients with advanced non-small-cell lung cancer. Anticancer Drugs. 2013;24(3):300–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Jordheim LP, Seve P, Tredan O, Dumontet C. The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer. Lancet Oncol. 2011;12(7):693–702.CrossRefPubMedGoogle Scholar
  63. 63.
    Mlak R, Krawczyk P, Ciesielka M, Koziol P, Homa I, Powrozek T et al. The relationship between RRM1 gene polymorphisms and effectiveness of gemcitabine-based first-line chemotherapy in advanced NSCLC patient. Clin Trans Oncol. 2016;18(9):915–924.CrossRefGoogle Scholar
  64. 64.
    Mazzoni F, Cecere FL, Meoni G, Giuliani C, Boni L, Camerini A, et al. Phase II trial of customized first line chemotherapy according to ERCC1 and RRM1 SNPs in patients with advanced non-small-cell lung cancer. Lung Cancer. 2013;82(2):288–93.CrossRefPubMedGoogle Scholar
  65. 65.
    Liu Y, Bernauer AM, Yingling CM, Belinsky SA. HIF1alpha regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis. 2012;33(6):1187–92.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng H, Qin Q, Sun X, Li F, Sun N, Cheng L, et al. Predictive effect of XPA and XPD polymorphisms on survival of advanced NSCLC patients treated with platinum-based chemotherapy: a three-dimensional (3-D), polyacrylamide gel-based DNA microarray method. Technol Cancer Res Treat. 2013;12(5):473–82.PubMedGoogle Scholar
  67. 67.
    Feng J, Sun X, Sun N, Qin S, Li F, Cheng H, et al. XPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai). 2009;41(5):429–35.CrossRefGoogle Scholar
  68. 68.
    El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003;31(19):5526–33.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhao W, Hu L, Xu J, Shen H, Hu Z, Ma H, et al. Polymorphisms in the base excision repair pathway modulate prognosis of platinum-based chemotherapy in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2013;71(5):1287–95.CrossRefPubMedGoogle Scholar
  70. 70.
    Yuan Z, Li J, Hu R, Jiao Y, Han Y, Weng Q. Predictive assessment in pharmacogenetics of XRCC1 gene on clinical outcomes of advanced lung cancer patients treated with platinum-based chemotherapy. Sci Rep. 2015;5:16482.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gu AQ, Wang WM, Chen WY, Shi CL, Lu JH, Han JQ. XRCC1 genetic polymorphisms and sensitivity to platinum-based drugs in non-small cell lung cancer: an update meta-analysis based on 4708 subjects. Int J Clin Exp Med. 2015;8(1):145–54.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Li L, Wan C, Wen FQ. Polymorphisms in the XRCC1 gene are associated with treatment response to platinum chemotherapy in advanced non-small cell lung cancer patients based on meta-analysis. Genet Mol Res. 2014;13(2):3772–86.CrossRefPubMedGoogle Scholar
  73. 73.
    Wu J, Liu J, Zhou Y, Ying J, Zou H, Guo S, et al. Predictive value of XRCC1 gene polymorphisms on platinum-based chemotherapy in advanced non-small cell lung cancer patients: a systematic review and meta-analysis. Clin Cancer Res. 2012;18(14):3972–81.CrossRefPubMedGoogle Scholar
  74. 74.
    Chen J, Zhao QW, Shi GM, Wang LR. XRCC1 Arg399Gln and clinical outcome of platinum-based treatment for advanced non-small cell lung cancer: a meta-analysis in 17 studies. J Zhejiang Univ Sci B. 2012;13(11):875–83.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhao R, Chen G. Role of GSTP1 Ile105Val and XRCC1 Arg194Trp, Arg280His and Arg399Gln gene polymorphisms in the clinical outcome of advanced non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(11):14909–16.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Peng Y, Li Z, Zhang S, Xiong Y, Cun Y, Qian C, et al. Association of DNA base excision repair genes (OGG1, APE1 and XRCC1) polymorphisms with outcome to platinum-based chemotherapy in advanced nonsmall-cell lung cancer patients. Int J Cancer. 2014;135(11):2687–96.CrossRefPubMedGoogle Scholar
  77. 77.
    Jeggo PA, Lobrich M. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J. 2015;471(1):1–11.CrossRefPubMedGoogle Scholar
  78. 78.
    de Las PR, Sanchez-Ronco M, Alberola V, Taron M, Camps C, Garcia-Carbonero R, et al. Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol. 2006;17(4):668–75.CrossRefGoogle Scholar
  79. 79.
    Shen XY, Lu FZ, Wu Y, Zhao LT, Lin ZF. XRCC3 Thr241Met polymorphism and clinical outcomes of NSCLC patients receiving platinum-based chemotherapy: a systematic review and meta-analysis. PLoS ONE. 2013;8(8):e69553.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Qiu M, Xu L, Yang X, Ding X, Hu J, Jiang F, et al. XRCC3 Thr241Met is associated with response to platinum-based chemotherapy but not survival in advanced non-small cell lung cancer. PLoS ONE. 2013;8(10):e77005.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14(9):882–92.CrossRefPubMedGoogle Scholar
  82. 82.
    Deng Q, Sheng L, Su D, Zhang L, Liu P, Lu K, et al. Genetic polymorphisms in ATM, ERCC1, APE1 and iASPP genes and lung cancer risk in a population of southeast China. Med Oncol. 2011;28(3):667–72.CrossRefPubMedGoogle Scholar
  83. 83.
    Xu JL, Hu LM, Huang MD, Zhao W, Yin YM, Hu ZB, et al. Genetic variants of NBS1 predict clinical outcome of platinum-based chemotherapy in advanced non-small cell lung cancer in Chinese. Asian Pac J Cancer Prev. 2012;13(3):851–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Sawant A, Kothandapani A, Zhitkovich A, Sobol RW, Patrick SM. Role of mismatch repair proteins in the processing of cisplatin interstrand cross-links. DNA Repair (Amst). 2015;35:126–36.CrossRefGoogle Scholar
  85. 85.
    Duckett DR, Drummond JT, Murchie AI, Reardon JT, Sancar A, Lilley DM, et al. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci USA. 1996;93(13):6443–7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kamal NS, Soria JC, Mendiboure J, Planchard D, Olaussen KA, Rousseau V, et al. MutS homologue 2 and the long-term benefit of adjuvant chemotherapy in lung cancer. Clin Cancer Res. 2010;16(4):1206–15.CrossRefPubMedGoogle Scholar
  87. 87.
    Cheng H, Sun N, Sun X, Chen B, Li F, Feng J, et al. Polymorphisms in hMSH2 and hMLH1 and response to platinum-based chemotherapy in advanced non-small-cell lung cancer patients. Acta Biochim Biophys Sin. 2010;42(5):311–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Xu XL, Yao YL, Xu WZ, Feng JG, Mao WM. Correlation of MSH3 polymorphisms with response and survival in advanced non-small cell lung cancer patients treated with first-line platinum-based chemotherapy. Genet Mol Res. 2015;14(2):3525–33.CrossRefPubMedGoogle Scholar
  89. 89.
    Santos FN, de Castria TB, Cruz MR, Riera R. Chemotherapy for advanced non-small cell lung cancer in the elderly population. Cochrane Database Syst Rev. 2015;10:D10463.Google Scholar
  90. 90.
    John Wiley & Sons, Inc. About cochrane reviews. 1999. http://www.cochranelibrary.com/about/about-cochrane-systematic-reviews.html. Accessed 11 Oct 2016.
  91. 91.
    Haynes RB. Of studies, syntheses, synopses, summaries, and systems: the “5S” evolution of information services for evidence-based health care decisions. ACP J Club. 2006;145(3):A8.PubMedGoogle Scholar
  92. 92.
    Muzzey D, Evans EA, Lieber C. Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep. 2015;3(4):158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Coleman C, Quinn EM, McManus R. Quality control procedures for high-throughput genetic association studies. Methods Mol Biol. 2015;1326:203–15.CrossRefPubMedGoogle Scholar
  94. 94.
    Hu L, Wu C, Zhao X, Heist R, Su L, Zhao Y, et al. Genome-wide association study of prognosis in advanced non-small cell lung cancer patients receiving platinum-based chemotherapy. Clin Cancer Res. 2012;18(19):5507–14.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.CrossRefPubMedGoogle Scholar
  96. 96.
    Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68.CrossRefPubMedGoogle Scholar
  97. 97.
    Yu KH, Ricigliano M, Hidalgo M, Abou-Alfa GK, Lowery MA, Saltz LB, et al. Pharmacogenomic modeling of circulating tumor and invasive cells for prediction of chemotherapy response and resistance in pancreatic cancer. Clin Cancer Res. 2014;20(20):5281–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Institute of Information Security and Big DataCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations