Advertisement

Medical Oncology

, 34:41 | Cite as

Roles of FoxM1 in cell regulation and breast cancer targeting therapy

  • Xin Song
  • Samuel Selorm Fiati Kenston
  • Jinshun Zhao
  • Danting Yang
  • Yuanliang Gu
Review Article

Abstract

Forkhead box M1 (FoxM1) is an oncogenic transcription factor involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. It is overexpressed in many human cancers, especially in breast cancers. Posttranslational modifications are known to play an important role in regulating the expression and transcriptional activity of FoxM1. In this review, we characterize the posttranslational modifications of FoxM1, summarize modifications of FoxM1 by different kinases, explore the relationship between the different sites of modifications and comprehensively describe how posttranslational modifications to regulate the function of FoxM1 by changing protein stability, nucleus localization and transcriptional activity. Additionally, we systematically summarize the roles of FoxM1 in breast cancer occurrence, therapy and drug resistance. The purpose of this paper tries to give a better understanding of the regulatory mechanisms of FoxM1 in cell regulation and highlights potential of a new method for breast cancer therapy by targeting FoxM1.

Keywords

FoxM1 Cell regulation Breast cancer Targeting therapy 

Notes

Acknowledgements

This work was partly supported by the National Nature Science Foundation of China (Grant Nos 21405138 and 81273111), the Scientific Projects of Zhejiang Province (2015C33148 and 2015C37117), the Foundations of Innovative Research Team of Educational Commission of Zhejiang Province (T200907), Ningbo Scientific Innovation Team for Environmental Hazardous Factor Control and Prevention (2016C51001) and KC Wong Magna Fund in Ningbo University.

Compliance with ethical standards

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775(1):92–102. doi: 10.1016/j.bbcan.2006.08.006.PubMedGoogle Scholar
  2. 2.
    Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364(6436):412–20. doi: 10.1038/364412a0.CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang Y, Liao Y, He H, Xin Q, Tu Z, Kong S, et al. FoxM1 Directs STAT3 expression essential for human endometrial stromal decidualization. Scientific Reports. 2015;5:13735. doi: 10.1038/srep13735.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R. Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia. 2004;6(6):744–50. doi: 10.1593/neo.04277.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, et al. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol. 1997;17(3):1626–41.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wierstra I, Alves J. FOXM1c and Sp1 transactivate the P1 and P2 promoters of human c-myc synergistically. Biochem Biophys Res Commun. 2007;352(1):61–8. doi: 10.1016/j.bbrc.2006.10.151.CrossRefPubMedGoogle Scholar
  7. 7.
    Wierstra I, Alves J. FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. FEBS J. 2006;273(20):4645–67. doi: 10.1111/j.1742-4658.2006.05468.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Wierstra I, Alves J. The central domain of transcription factor FOXM1c directly interacts with itself in vivo and switches from an essential to an inhibitory domain depending on the FOXM1c binding site. Biol Chem. 2007;388(8):805–18. doi: 10.1515/bc.2007.094.CrossRefPubMedGoogle Scholar
  9. 9.
    Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, Kleij L, et al. Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol Cell Biol. 2008;28(9):3076–87. doi: 10.1128/mcb.01710-07.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Korver W, Roose J, Clevers H. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res. 1997;25(9):1715–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, Leung WY, et al. Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett. 2001;507(1):59–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Chan DW, Yu SY, Chiu PM, Yao KM, Liu VW, Cheung AN, et al. Over-expression of FOXM1 transcription factor is associated with cervical cancer progression and pathogenesis. J Pathol. 2008;215(3):245–52. doi: 10.1002/path.2355.CrossRefPubMedGoogle Scholar
  13. 13.
    Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, et al. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem. 2008;283(24):16545–53. doi: 10.1074/jbc.M709604200.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Costa RH. FoxM1 dances with mitosis. Nat Cell Biol. 2005;7(2):108–10. doi: 10.1038/ncb0205-108.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV, et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 2006;66(4):2153–61. doi: 10.1158/0008-5472.can-05-3003.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Kiyokawa H, Dennewitz MB, Costa RH. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA. 2002;99(26):16881–6. doi: 10.1073/pnas.252570299.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25(24):10875–94. doi: 10.1128/mcb.25.24.10875-10894.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7(2):126–36. doi: 10.1038/ncb1217.CrossRefPubMedGoogle Scholar
  19. 19.
    Halasi M, Gartel AL. FOX(M1) news–it is cancer. Mol Cancer Ther. 2013;12(3):245–54. doi: 10.1158/1535-7163.mct-12-0712.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Janus JR, Laborde RR, Greenberg AJ, Wang VW, Wei W, Trier A, et al. Linking expression of FOXM1, CEP55 and HELLS to tumorigenesis in oropharyngeal squamous cell carcinoma. Laryngoscope. 2011;121(12):2598–603. doi: 10.1002/lary.22379.CrossRefPubMedGoogle Scholar
  21. 21.
    Huynh KM, Soh JW, Dash R, Sarkar D, Fisher PB, Kang D. FOXM1 expression mediates growth suppression during terminal differentiation of HO-1 human metastatic melanoma cells. J Cell Physiol. 2011;226(1):194–204. doi: 10.1002/jcp.22326.CrossRefPubMedGoogle Scholar
  22. 22.
    Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer. 2010;9:45. doi: 10.1186/1476-4598-9-45.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakamura S, Hirano I, Okinaka K, Takemura T, Yokota D, Ono T, et al. The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Carcinogenesis. 2010;31(11):2012–21. doi: 10.1093/carcin/bgq185.CrossRefPubMedGoogle Scholar
  24. 24.
    Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M, et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS ONE. 2009;4(3):e4849. doi: 10.1371/journal.pone.0004849.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res. 2007;67(17):8293–300. doi: 10.1158/0008-5472.can-07-1265.CrossRefPubMedGoogle Scholar
  26. 26.
    Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem. 2006;281(35):25167–76. doi: 10.1074/jbc.M603906200.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006;66(7):3593–602. doi: 10.1158/0008-5472.can-05-2912.CrossRefPubMedGoogle Scholar
  28. 28.
    Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV, et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 2006;66(3):1712–20. doi: 10.1158/0008-5472.can-05-3138.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalinina OA, Kalinin SA, Polack EW, Mikaelian I, Panda S, Costa RH, et al. Sustained hepatic expression of FoxM1B in transgenic mice has minimal effects on hepatocellular carcinoma development but increases cell proliferation rates in preneoplastic and early neoplastic lesions. Oncogene. 2003;22(40):6266–76. doi: 10.1038/sj.onc.1206640.CrossRefPubMedGoogle Scholar
  30. 30.
    Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 2002;62(16):4773–80.PubMedGoogle Scholar
  31. 31.
    Mancuso MR, Massarweh SA. Endocrine therapy and strategies to overcome therapeutic resistance in breast cancer. Curr Probl Cancer. 2016. doi: 10.1016/j.currproblcancer.2016.09.001.PubMedGoogle Scholar
  32. 32.
    Saba R, Alsayed A, Zacny JP, Dudek AZ. The role of Forkhead box protein M1 in breast cancer progression and resistance to therapy. Int J Breast Cancer. 2016;2016:9768183. doi: 10.1155/2016/9768183.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20(5):620–34. doi: 10.1016/j.ccr.2011.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Major ML, Lepe R, Costa RH. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol. 2004;24(7):2649–61.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Luscher-Firzlaff JM, Lilischkis R, Luscher B. Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett. 2006;580(7):1716–22. doi: 10.1016/j.febslet.2006.02.021.CrossRefPubMedGoogle Scholar
  36. 36.
    Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 2005;118(Pt 4):795–806. doi: 10.1242/jcs.01657.CrossRefPubMedGoogle Scholar
  37. 37.
    Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol. 2008;10(9):1076–82. doi: 10.1038/ncb1767.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, et al. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells. 2013;31(6):1051–63. doi: 10.1002/stem.1358.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Alvarez-Fernandez M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH. Protein phosphatase 2A (B55alpha) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation. J Biol Chem. 2011;286(38):33029–36. doi: 10.1074/jbc.M111.253724.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, et al. Novel interactions between FOXM1 and CDC25A regulate the cell cycle. PLoS ONE. 2012;7(12):e51277. doi: 10.1371/journal.pone.0051277.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol. 2007;27(3):1007–16. doi: 10.1128/mcb.01068-06.CrossRefPubMedGoogle Scholar
  42. 42.
    Wierstra I, Alves J. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biolo Chem. 2006;387(7):949–62. doi: 10.1515/bc.2006.119.Google Scholar
  43. 43.
    Wierstra I. Cyclin D1/Cdk4 increases the transcriptional activity of FOXM1c without phosphorylating FOXM1c. Biochem Biophys Res Commun. 2013;431(4):753–9. doi: 10.1016/j.bbrc.2013.01.037.CrossRefPubMedGoogle Scholar
  44. 44.
    Duverger O, Chen SX, Lee D, Li T, Chock PB, Morasso MI. SUMOylation of DLX3 by SUMO1 promotes its transcriptional activity. J Cell Biochem. 2011;112(2):445–52. doi: 10.1002/jcb.22891.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Abed M, Barry KC, Kenyagin D, Koltun B, Phippen TM, Delrow JJ, et al. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO J. 2011;30(7):1289–301. doi: 10.1038/emboj.2011.42.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rytinki MM, Palvimo JJ. SUMOylation modulates the transcription repressor function of RIP140. J Biol Chem. 2008;283(17):11586–95. doi: 10.1074/jbc.M709359200.CrossRefPubMedGoogle Scholar
  47. 47.
    Gong Z, Brackertz M, Renkawitz R. SUMO modification enhances p66-mediated transcriptional repression of the Mi-2/NuRD complex. Mol Cell Biol. 2006;26(12):4519–28. doi: 10.1128/mcb.00409-06.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yang WH, Heaton JH, Brevig H, Mukherjee S, Iniguez-Lluhi JA, Hammer GD. SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol. 2009;29(3):613–25. doi: 10.1128/mcb.00295-08.CrossRefPubMedGoogle Scholar
  49. 49.
    Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999;18(22):6455–61. doi: 10.1093/emboj/18.22.6455.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Myatt SS, Kongsema M, Man CW, Kelly DJ, Gomes AR, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33(34):4316–29. doi: 10.1038/onc.2013.546.CrossRefPubMedGoogle Scholar
  51. 51.
    Jaiswal N, John R, Chand V, Nag A. Oncogenic Human Papillomavirus 16E7 modulates SUMOylation of FoxM1b. Int J Biochem Cell Biol. 2015;58:28–36. doi: 10.1016/j.biocel.2014.11.002.CrossRefPubMedGoogle Scholar
  52. 52.
    Schimmel J, Eifler K, Sigurethsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, et al. Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell. 2014;53(6):1053–66. doi: 10.1016/j.molcel.2014.02.001.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang CM, Liu R, Wang L, Nascimento L, Brennan VC, Yang WH. SUMOylation of FOXM1B alters its transcriptional activity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells. Int J Mol Sci. 2014;15(6):10233–51. doi: 10.3390/ijms150610233.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Karunarathna U, Kongsema M, Zona S, Gong C, Cabrera E, Gomes AR, et al. OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene. 2015. doi: 10.1038/onc.2015.208.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365(6449):855–9. doi: 10.1038/365855a0.CrossRefPubMedGoogle Scholar
  56. 56.
    Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8(8):869–84.CrossRefPubMedGoogle Scholar
  57. 57.
    Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell. 1989;56(1):67–75.CrossRefPubMedGoogle Scholar
  58. 58.
    Bedford DC, Kasper LH, Fukuyama T, Brindle PK. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics. 2010;5(1):9–15.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi: 10.1038/35021093.CrossRefPubMedGoogle Scholar
  60. 60.
    Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM, et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 2004;18(7):830–50. doi: 10.1101/gad.1200704.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yoshida Y, Wang IC, Yoder HM, Davidson NO, Costa RH. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology. 2007;132(4):1420–31. doi: 10.1053/j.gastro.2007.01.036.CrossRefPubMedGoogle Scholar
  62. 62.
    van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163(3):1033–43. doi: 10.1016/s0002-9440(10)63463-3.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64. doi: 10.1186/1471-2407-7-64.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 2007;388(12):1257–74. doi: 10.1515/bc.2007.159.CrossRefPubMedGoogle Scholar
  65. 65.
    McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5(Suppl 1):3–10.CrossRefPubMedGoogle Scholar
  66. 66.
    Graff BA, Bjornaes I, Rofstad EK. Microvascular permeability of human melanoma xenografts to macromolecules: relationships to tumor volumetric growth rate, tumor angiogenesis, and VEGF expression. Microvasc Res. 2001;61(2):187–98. doi: 10.1006/mvre.2001.2303.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, et al. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1alpha-dependent and -independent manners. Oncotarget. 2016;7(17):23740–56. doi: 10.18632/oncotarget.8060.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, et al. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res. 2008;68(21):8733–42. doi: 10.1158/0008-5472.can-08-1968.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Park HJ, Gusarova G, Wang Z, Carr JR, Li J, Kim KH, et al. Deregulation of FoxM1b leads to tumour metastasis. EMBO Mole Med. 2011;3(1):21–34. doi: 10.1002/emmm.201000107.CrossRefGoogle Scholar
  70. 70.
    Wang X, Bhattacharyya D, Dennewitz MB, Kalinichenko VV, Zhou Y, Lepe R, et al. Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr. 2003;11(3–4):149–62.CrossRefPubMedGoogle Scholar
  71. 71.
    Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R, et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene. 2007;26(42):6212–9. doi: 10.1038/sj.onc.1210443.CrossRefPubMedGoogle Scholar
  72. 72.
    Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X, et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 2013;340(1):104–12. doi: 10.1016/j.canlet.2013.07.004.CrossRefPubMedGoogle Scholar
  73. 73.
    Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A, et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008;8:42. doi: 10.1186/1471-2407-8-42.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi YL, Lu H, Katzenellenbogen BS. The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res BCR. 2014;16(5):436. doi: 10.1186/s13058-014-0436-4.CrossRefPubMedGoogle Scholar
  75. 75.
    Ahn H, Sim J. Increased expression of forkhead box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor-positive breast cancer. J Korean Med Sci. 2015;30(4):390–7. doi: 10.3346/jkms.2015.30.4.390.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Horimoto Y, Hartman J, Millour J, Pollock S, Olmos Y, Ho KK, et al. ERbeta1 represses FOXM1 expression through targeting ERalpha to control cell proliferation in breast cancer. Am J Pathol. 2011;179(3):1148–56. doi: 10.1016/j.ajpath.2011.05.052.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB, et al. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol. 2009;35(1):57–68.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 2016;7(13):16619–35. doi: 10.18632/oncotarget.7672.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Park YY, Jung SY, Jennings NB, Rodriguez-Aguayo C, Peng G, Lee SR, et al. FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair. Carcinogenesis. 2012;33(10):1843–53. doi: 10.1093/carcin/bgs167.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Millour J, Constantinidou D, Stavropoulou AV, Wilson MS, Myatt SS, Kwok JM, et al. FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene. 2010;29(20):2983–95. doi: 10.1038/onc.2010.47.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, et al. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal. 2015;27(12):2496–505. doi: 10.1016/j.cellsig.2015.09.013.CrossRefPubMedGoogle Scholar
  82. 82.
    Khongkow P, Gomes AR, Gong C, Man EP, Tsang JW, Zhao F, et al. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene. 2016;35(8):990–1002. doi: 10.1038/onc.2015.152.CrossRefPubMedGoogle Scholar
  83. 83.
    Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, et al. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mole Cancer Res MCR. 2010;8(1):24–34. doi: 10.1158/1541-7786.mcr-09-0432.CrossRefGoogle Scholar
  84. 84.
    McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS, et al. Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther. 2009;8(3):582–91. doi: 10.1158/1535-7163.mct-08-0805.CrossRefPubMedGoogle Scholar
  85. 85.
    Millour J, de Olano N, Horimoto Y, Monteiro LJ, Langer JK, Aligue R, et al. ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance. Mol Cancer Ther. 2011;10(6):1046–58. doi: 10.1158/1535-7163.mct-11-0024.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene. 2013;32(39):4634–45. doi: 10.1038/onc.2012.491.CrossRefPubMedGoogle Scholar
  87. 87.
    Arora R, Yates C, Gary BD, McClellan S, Tan M, Xi Y, et al. Panepoxydone targets NF-kB and FOXM1 to inhibit proliferation, induce apoptosis and reverse epithelial to mesenchymal transition in breast cancer. PLoS ONE. 2014;9(6):e98370. doi: 10.1371/journal.pone.0098370.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ahmad A, Ali S, Wang Z, Ali AS, Sethi S, Sakr WA, et al. 3,3′-Diindolylmethane enhances taxotere-induced growth inhibition of breast cancer cells through downregulation of FoxM1. Int J Cancer. 2011;129(7):1781–91. doi: 10.1002/ijc.25839.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yu G, Zhou A, Xue J, Huang C, Zhang X, Kang SH, et al. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway. Oncotarget. 2015;6(13):11281–94. doi: 10.18632/oncotarget.3596.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kwok JM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EW. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther. 2008;7(7):2022–32. doi: 10.1158/1535-7163.MCT-08-0188.CrossRefPubMedGoogle Scholar
  91. 91.
    Wang JS, Ren TN, Xi T. Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells. Med Oncol. 2012;29(1):10–5. doi: 10.1007/s12032-010-9777-8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedicine School of Ningbo UniversityNingboPeople’s Republic of China

Personalised recommendations