Skip to main content

Advertisement

Log in

Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pyrroline-5-carboxylate reductase 1 (PYCR1) is an enzyme involved in cell metabolism, which has been shown to be up-regulated in cancers. However, the functions of PYCR1 in prostate cancers (PCa) are still largely unknown. In the present study, we found that PYCR1 was highly expressed in prostate cancer tissues and then knocked down PYCR1 in PCa cell lines (DU145, PC-3 and LNCap) via lentivirus-mediated gene delivery and analyzed its biological function. Both qRT-PCR and western blotting indicated that PYCR1 was suppressed efficiently after sh-PYCR1 infection. Further analysis indicated knockdown of PYCR1 significantly inhibited PCa cell growth and colony formation ability. The inhibition effects on growth were likely due to G2/M-phase arrest and enhanced cell apoptosis, as determined by flow cytometer analysis. At last, we verified the expression levels of cell cycle regulatory proteins, including CDK1, CDK2, CDK4 and Cyclin B1 were all downregulated and cell apoptotic-related proteins, including cleaved caspase 3 and cleaved PARP were increased in PCa cells after PYCR1 knockdown. Furthermore, PYCR1 has been shown not to be directly regulated by androgen receptor (AR) levels. These results show the functions of PYCR1 in PCa tumorigenesis for the first time and suggest that PYCR1 might be a good potential therapy approach for treating PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cancer statistics. JAMA. 2013;310:982. doi:10.1001/jama.2013.5289.

  2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    Article  CAS  PubMed  Google Scholar 

  3. Baade PD, Youlden DR, Cramb SM, Dunn J, Gardiner RA. Epidemiology of prostate cancer in the Asia-Pacific region. Prostate Int. 2013;1:47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD. Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer. 2004;11:459–76.

    Article  CAS  PubMed  Google Scholar 

  5. Gomella LG, Petrylak DP, Shayegan B. Current management of advanced and castration resistant prostate cancer. Can J Urol. 2014;21:1–6.

    PubMed  Google Scholar 

  6. Struys EA, Jansen EE, Salomons GS. Human pyrroline-5-carboxylate reductase (PYCR1) acts on Delta(1)-piperideine-6-carboxylate generating L-pipecolic acid. J Inherit Metab Dis. 2014;37:327–32.

    Article  CAS  PubMed  Google Scholar 

  7. Guernsey DL, Jiang H, Evans SC, Ferguson M, Matsuoka M, Nightingale M, et al. Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet. 2009;85:120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet. 2009;41:1016–21.

    Article  CAS  PubMed  Google Scholar 

  9. Kretz R, Bozorgmehr B, Kariminejad MH, Rohrbach M, Hausser I, Baumer A, et al. Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities. J Inherit Metab Dis. 2011;34:731–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lin DS, Yeung CY, Liu HL, Ho CS, Shu CH, Chuang CK, et al. A novel mutation in PYCR1 causes an autosomal recessive cutis laxa with premature aging features in a family. Am J Med Genet Part A. 2011;155A:1285–9.

    Article  PubMed  Google Scholar 

  11. Dimopoulou A, Fischer B, Gardeitchik T, Schroter P, Kayserili H, Schlack C, et al. Genotype-phenotype spectrum of PYCR1-related autosomal recessive cutis laxa. Mol Genet Metab. 2013;110:352–61.

    Article  CAS  PubMed  Google Scholar 

  12. Scherrer DZ, Baptista MB, Matos AH, Maurer-Morelli CV, Steiner CE. Mutations in PYCR1 gene in three families with autosomal recessive cutis laxa, type 2. Eur J Med Genet. 2013;56:336–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol. 2002;160:2169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jariwala U, Prescott J, Jia L, Barski A, Pregizer S, Cogan JP, et al. Identification of novel androgen receptor target genes in prostate cancer. Mol Cancer. 2007;6:39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maxwell SA, Davis GE. Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA. 2000;97:13009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med. 2008;44:671–81.

    Article  CAS  PubMed  Google Scholar 

  17. Yasuda T, Kaji Y, Agatsuma T, Niki T, Arisawa M, Shuto S, et al. DJ-1 cooperates with PYCR1 in cell protection against oxidative stress. Biochem Biophys Res Commun. 2013;436:289–94.

    Article  CAS  PubMed  Google Scholar 

  18. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 2012;109:8983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular control of prostatic development. Dev Biol. 2003;253:165–74.

    Article  CAS  PubMed  Google Scholar 

  20. Geck P, Szelei J, Jimenez J, Lin TM, Sonnenschein C, Soto AM. Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. J Steroid Biochem Mol Biol. 1997;63:211–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996;28:98–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Natural Science Foundation of China (81272247 and 81372751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Conflict of interest

Conflict of interest relevant to this article was not reported.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional of Fuzhou General Hospital Affiliated to Fujian Medical University.

Additional information

Tengyue Zeng, Libing Zhu and Min Liao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12032_2016_870_MOESM1_ESM.tif

Figure S1. (A) The gene delivery efficiency of shPYCR1(S1) in LNCap cells. Upper panels, bright field; lower panels, GFP fluorescence (green). Scale bar, 10 μm. (B) Western blotting analysis of PYCR1 protein levels in shPYCR1(S1)-infected LNCap cells. (C) The proliferation levels of LNCap cells after shPYCR1(S1) infection analyzed by the MTT assay. Data are expressed as mean ± standard deviation (SD) of three independent experiments. ***p < 0.001. (D) Western blot analysis of PYCR1 and PSA protein levels in Con, AR inhibitor (Bicalutamide) or AR activator (DHT) treated LNCap cells. (TIFF 1329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, T., Zhu, L., Liao, M. et al. Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer. Med Oncol 34, 27 (2017). https://doi.org/10.1007/s12032-016-0870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0870-5

Keywords

Navigation