Advertisement

Medical Oncology

, 34:7 | Cite as

Salivary biomarkers in cancer detection

  • Xiaoqian Wang
  • Karolina Elżbieta Kaczor-Urbanowicz
  • David T. W. Wong
Review Article

Abstract

Cancer is the second most common cause of death in the USA. Its symptoms are often not specific and absent, until the tumors have already metastasized. Therefore, there is an urgent demand for developing rapid, highly accurate and noninvasive tools for cancer screening, early detection, diagnostics, staging and prognostics. Saliva as a multi-constituent oral fluid comprises secretions from the major and minor salivary glands, extensively supplied by blood. Molecules such as DNAs, RNAs, proteins, metabolites, and microbiota, present in blood, could be also found in saliva. Recently, salivary diagnostics has drawn significant attention for the detection of specific biomarkers, since the sample collection and processing are simple, cost-effective, and precise and do not cause patient discomfort. Here, we review recent salivary candidate biomarkers for systemic cancers by dividing them according to their origin into: genomic, transcriptomic, proteomic, metabolomic and microbial types.

Keywords

Biomarkers Cancer Exosomes Saliva 

Notes

Compliance with ethical standards

Conflict of interest

David Wong is co-founder of RNAmeTRIX Inc., a molecular diagnostic company. He holds equity in RNAmeTRIX and serves as a company Director and Scientific Advisor. The University of California also holds equity in RNAmeTRIX. Intellectual property that David Wong invented and which was patented by the University of California has been licensed to RNAmeTRIX. The other authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang MY, Tsai HL, Huang JJ, Wang JY. Clinical implications and future perspectives of circulating tumor cells and biomarkers in clinical outcomes of colorectal cancer. Transl Oncol. 2016;9:340–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Soini HA, Klouckova I, Wiesler D, Oberzaucher E, Grammer K, Dixon SJ, et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. J Chem Ecol. 2010;36:1035–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150:119–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Slavkin HC. Toward molecularly based diagnostics for the oral cavity. J Am Dent Assoc. 1998;129:1138–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Lee JM, Garon E, Wong DT. Salivary diagnostics. Orthod Craniofac Res. 2009;12:206–11.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lawrence HP. Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health. J Can Dent Assoc. 2002;68:170–5.PubMedGoogle Scholar
  8. 8.
    Rylander-Rudqvist T, Håkansson N, Tybring G, Wolk A. Quality and quantity of saliva DNA obtained from the self-administrated oragene method—a pilot study on the cohort of Swedish men. Cancer Epidemiol Biomark Prev. 2006;15:1742–5.CrossRefGoogle Scholar
  9. 9.
    Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genom. 2012;5:19.CrossRefGoogle Scholar
  10. 10.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, et al. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190:1117–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li Y, Zhou X, St John MA, Wong DT. RNA profiling of cell-free saliva using microarray technology. J Dent Res. 2004;83:199–203.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee YH, Zhou H, Reiss JK, Yan X, Zhang L, Chia D, et al. Direct saliva transcriptome analysis. Clin Chem. 2011;57:1295–302.CrossRefPubMedGoogle Scholar
  16. 16.
    Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci. 2015;16:8676–98.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang L, Xiao H, Zhou H, Santiago S, Lee JM, Garon EB, et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci. 2012;69:3341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010;138:949–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Gao S, Chen LY, Wang P, Liu LM, Chen Z. MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. Biomed Res Int. 2014;2014:756347.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE. 2010;5:e15573.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bassim CW, Ambatipudi KS, Mays JW, Edwards DA, Swatkoski S, Fassil H, et al. Quantitative salivary proteomic differences in oral chronic graft-versus-host disease. J Clin Immunol. 2012;32:1390–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loo J, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89:1016–23.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Papale M, Pedicillo MC, Di Paolo S, Thatcher BJ, Lo Muzio L, Bufo P, et al. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS): from sample collection to data analysis. Clin Chem Lab Med. 2008;46:89–99.CrossRefPubMedGoogle Scholar
  24. 24.
    Ciavarella D, Mastrovincenzo M, D’Onofrio V, Chimenti C, Parziale V, Barbato E, et al. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) in orthodontic treatment: first pilot study. Prog Orthod. 2011;12:126–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Streckfus CF, Bigler LR, Zwick M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study. J Oral Pathol Med. 2006;35:292–300.CrossRefPubMedGoogle Scholar
  26. 26.
    Li X, Yang T, Lin J. Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt. 2012;17:037003.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu W, Gong H, Liu M, Chen G, Chen R. Noninvasive breast tumors detection based on saliva protein surface enhanced Raman spectroscopy and regularized multinomial regression. In: 2015 8th international conference on biomedical engineering and informatics (BMEI). IEEE; 2015. p. 214–218.Google Scholar
  28. 28.
    Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature. 2008;456:443.CrossRefPubMedGoogle Scholar
  30. 30.
    Park C, Yun S, Lee SY, Park K, Lee J. Metabolic profiling of Klebsiella oxytoca: evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS. Appl Biochem Biotechnol. 2012;167:425–38.CrossRefPubMedGoogle Scholar
  31. 31.
    Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6:78–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Wei J, Xie G, Zhou Z, Shi P, Qiu Y, Zheng X, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011;129:2207–17.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, et al. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013;34:2865–72.PubMedGoogle Scholar
  34. 34.
    Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87:1016–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Burne RA, Zeng L, Ahn SJ, Palmer SR, Liu Y, Lefebure T, et al. Progress dissecting the oral microbiome in caries and health. Adv Dent Res. 2012;24:77–80.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ge X, Rodriguez R, Trinh M, Gunsolley J, Xu P. Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS ONE. 2013;8:e65520.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013;22:R88–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61:582–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 2015;3:e1373.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zilberman Y, Sonkusale SR. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens Bioelectron. 2015;67:465–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Agha-Hosseini F, Mirzaii-Dizgah I, Rahimi A. Correlation of serum and salivary CA15-3 levels in patients with breast cancer. Med Oral Patol Oral Cir Bucal. 2009;14:e521–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS ONE. 2012;7:e33037.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;51:2105–20.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Pisetsky DS, Gauley J, Ullal AJ. Microparticles as a source of extracellular DNA. Immunol Res. 2011;49:227–34.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.PubMedGoogle Scholar
  48. 48.
    Yamada T, Inoshima Y, Matsuda T, Ishiguro N. Comparison of methods for isolating exosomes from bovine milk. J Vet Med Sci. 2012;74:1523–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res. 2009;8:1304–14.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008;31:1059–62.CrossRefPubMedGoogle Scholar
  51. 51.
    Mahmoodzadeh Hosseini H, Imani Fooladi AA, Soleimanirad J, Nourani MR, Davaran S, Mahdavi M. Staphylococcal entorotoxin B anchored exosome induces apoptosis in negative esterogen receptor breast cancer cells. Tumour Biol. 2014;35:3699–707.CrossRefPubMedGoogle Scholar
  52. 52.
    Ritchie AJ, Crawford DM, Ferguson DJ, Burthem J, Roberts DJ. Normal prion protein is expressed on exosomes isolated from human plasma. Br J Haematol. 2013;163:678–80.CrossRefPubMedGoogle Scholar
  53. 53.
    Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. 2013;68:969–73.PubMedGoogle Scholar
  54. 54.
    Beninson LA, Fleshner M. Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol. 2014;26:394–401.CrossRefPubMedGoogle Scholar
  55. 55.
    O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther. 2012;12:262–74.CrossRefPubMedGoogle Scholar
  56. 56.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288:26888–97.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pu D, Liang H, Wei F, Akin D, Feng Z, Yan Q, et al. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: a pilot study. Thorac Cancer. 2016;7:428–36.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DT. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteom. 2012;11(M111):012112.Google Scholar
  59. 59.
    Jenkinson C, Earl J, Ghaneh P, Halloran C, Carrato A, Greenhalf W, et al. Biomarkers for early diagnosis of pancreatic cancer. Expert Rev Gastroenterol Hepatol. 2015;9:305–15.CrossRefPubMedGoogle Scholar
  60. 60.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.CrossRefPubMedGoogle Scholar
  61. 61.
    Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, et al. Salivary microRNA in pancreatic cancer patients. PLoS ONE. 2015;10:e0130996.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Xie Z, Yin X, Gong B, Nie W, Wu B, Zhang X, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res (Phila). 2015;8:165–73.CrossRefGoogle Scholar
  63. 63.
    Skaane P. Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review. Acta Radiol. 2009;50:3–14.CrossRefPubMedGoogle Scholar
  64. 64.
    Laidi F, Bouziane A, Lakhdar A, Khabouze S, Amrani M, Rhrab B, et al. Significant correlation between salivary and serum Ca 15-3 in healthy women and breast cancer patients. Asian Pac J Cancer Prev. 2014;15:4659–62.CrossRefPubMedGoogle Scholar
  65. 65.
    Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteom. 2013;10:13.CrossRefGoogle Scholar
  66. 66.
    Wood N, Streckfus CF. The expression of lung resistance protein in saliva: a novel prognostic indicator protein for carcinoma of the breast. Cancer Investig. 2015;33:510–5.CrossRefGoogle Scholar
  67. 67.
    Jinno H, Murata T, Sunamura M, Sugimoto M. Investigation of potential salivary biomarkers for the diagnosis of breast cancer. In: ASCO annual meeting proceedings; 2015. p. 145.Google Scholar
  68. 68.
    Zhong L, Cheng F, Lu X, Duan Y, Wang X. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta. 2016;158:351–60.CrossRefPubMedGoogle Scholar
  69. 69.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  70. 70.
    Wu ZZ, Wang JG, Zhang XL. Diagnostic model of saliva protein finger print analysis of patients with gastric cancer. World J Gastroenterol. 2009;15:865–70.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Xiao H, Zhang Y, Kim Y, Kim S, Kim JJ, Kim KM, et al. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep. 2016;6:22165.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaoqian Wang
    • 1
    • 2
  • Karolina Elżbieta Kaczor-Urbanowicz
    • 1
  • David T. W. Wong
    • 1
  1. 1.Center for Oral/Head and Neck Oncology Research, Laboratory of Salivary Diagnostics, School of DentistryUniversity of California at Los AngelesLos AngelesUSA
  2. 2.State Key Laboratory of Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations