Medical Oncology

, 33:88 | Cite as

LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma

  • Yanping Wei
  • Qianqian Sun
  • Lindong Zhao
  • Jianbo Wu
  • Xiaonan Chen
  • Yuanyuan Wang
  • Wenqiao Zang
  • Guoqiang ZhaoEmail author
Original Paper


Recently, the incidence of melanoma has been on the rise. Patients with distant metastasis share poor prognosis. Increasing studies have been conducted to clarify the molecular mechanisms as well as to investigate potential effective therapeutic targets in the development of melanoma. This study focuses on the LncRNA UCA1 and its downstream regulated factors. In our experiments, UCA1 expression was discovered to be upregulated in melanoma tissues and cells, while the depletion of UCA1 led to the inhibition of cell proliferation, invasion and cell cycle arrest. To further our understanding of the mechanisms of UCA1, a system of experiments was built. We found that miR-507 could directly bind to UCA1 at the miRNA recognition site, and that there was a negative correlation between miR-507 and UCA1. Additionally, FOXM1 is a target of miR-507 and can be downregulated by either miR-507 overexpression or UCA1 depletion. Downregulated FOXM1 was analogous to the depletion of UCA1 and the overexpression of miR-507. These results, taken together, provide evidence for a novel UCA1 interaction regulatory network in tumorigenesis of melanoma.


Melanoma LncRNA UCA1 miR-507 FOXM1 



The authors are grateful to all staff at the study center who contributed to this study. This study was supported by a Grant from the Education Agency of Henan (No. 13A310671).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest or financial disclosures of this study.


  1. 1.
    Aladowicz E, Ferro L, Vitali GC, Venditti E, Fornasari L, Lanfrancone L. Molecular networks in melanoma invasion and metastasis. Future Oncol. 2013;9(5):713–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol. 2014;7(6):13–24.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cao B, Song N, Zhang M, Di C, Yang Y, Lu Y, et al. Systematic study of novel lncRNAs in different gastrointestinal cancer cells. Discov Med. 2016;21(115):159–71.PubMedGoogle Scholar
  5. 5.
    Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics. 2016;8(4):501–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z. TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life. 2016;68(5):355–64.CrossRefPubMedGoogle Scholar
  7. 7.
    Tian Y, Zhang X, Hao Y, Fang Z, He Y. Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res. 2014;24(4):335–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Yamamoto S, Inoue J, Kawano T, Kozaki K, Omura K, Inazawa J. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res. 2014;12(1):58–68.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016;29(4):452–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, et al. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci Rep. 2016;6(23892):9.Google Scholar
  11. 11.
    Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li Y, Wang T, Li Y, Chen D, Yu Z, Jin L, et al. Identification of long-non coding RNA UCA1 as an oncogene in renal cell carcinoma. Mol Med Rep. 2016;13(4):3326–34.PubMedGoogle Scholar
  13. 13.
    Nie W, Ge HJ, Yang XQ, Sun X, Huang H, Tao X, et al. LncRNA-UCA1exerts oncogenic functions in non-small cell lungcancerby targeting miR-193a-3p. Cancer Lett. 2016;371(1):99–106.CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes JM, Legnini I, Salvatori B, Masciarelli S, Marchioni M, Fazi F, et al. C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget. 2015;6(21):18534–44.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, et al. The emerging function and mechanism of ceRNAs in Cancer. Trends Genet. 2016;32(4):211–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Tuo YL, Li XM, Luo J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci. 2015;19(18):3403–11.PubMedGoogle Scholar
  17. 17.
    Myatt SS, Kongsema M, Man CW, Kelly DJ, Gomes AR, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33(34):4316–29.CrossRefPubMedGoogle Scholar
  18. 18.
    Sun Y, Yu X, Bai Q. miR-204 inhibits invasion and epithelial-mesenchymal transition by targeting FOXM1 in esophageal cancer. Int J Clin Exp Pathol. 2015;8(10):12775–83.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7(1):293–307.PubMedGoogle Scholar
  20. 20.
    Yuan F, Wang W. MicroRNA-802 suppresses breast cancer proliferation through downregulation of FoxM1. Mol Med Rep. 2015;12(3):4647–51.PubMedGoogle Scholar
  21. 21.
    Ito T, Kohashi K, Yamada Y, Maekawa A, Kuda M, Furue M, et al. Prognostic significance of Forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in melanoma. Histopathology. 2016;69(1):63–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Miyashita A, Fukushima S, Nakahara S, Yamashita J, Tokuzumi A, Aoi J, et al. Investigation of FOXM1 as a potential new target for melanoma. Plos One. 2015;10(12):e0144241.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics. 2015;10(2):103–21.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yanping Wei
    • 1
  • Qianqian Sun
    • 2
  • Lindong Zhao
    • 1
  • Jianbo Wu
    • 2
  • Xiaonan Chen
    • 2
  • Yuanyuan Wang
    • 2
  • Wenqiao Zang
    • 2
  • Guoqiang Zhao
    • 2
    • 3
    Email author
  1. 1.Department of DermatologyThe People’s Hospital of Jiaozuo CityJiaozuoChina
  2. 2.School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  3. 3.Collaborative Innovation Center of Cancer ChemopreventionZhengzhouChina

Personalised recommendations