Advertisement

Medical Oncology

, 33:58 | Cite as

Rap2B promotes cell proliferation, migration and invasion in prostate cancer

  • Jiehui Di
  • Huan Cao
  • Juangjuan Tang
  • Zheng Lu
  • Keyu Gao
  • Zhesi Zhu
  • Junnian ZhengEmail author
Original Paper

Abstract

Rap2B, a member of the Ras family of small GTP-binding proteins, reportedly presents a high level of expression in various human tumors and plays a significant role in the development of tumor. However, the function of Rap2B in prostate cancer (PCa) remains unclear. We elucidated the stimulative role of Rap2B in PCa cell proliferation, migration and invasion by means of the CCK-8 cell proliferation assay, cell cycle analysis and transwell migration assay. Western blot analysis uncovered that elevated Rap2B leads to increased phosphorylation levels of FAK, suggesting that FAK-dependent pathway might be responsible for the effect of Rap2B on PCa cells migration and invasion. Inversely, FAK-specific inhibitor (PF-573228) can abort Rap2B-induced FAK phosphorylation. In vivo experiment confirmed that Rap2B positively regulated PCa growth and metastasis, as well as the expression of phosphorylated FAK. Collectively, these findings shed light on Rap2B as a potential therapeutic target for PCa.

Keywords

Rap2B FAK Prostate cancer Migration 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81201637) and Natural Science Foundation for colleges and universities in Jiangsu Province (No. 14KJB320023).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi: 10.3322/caac.21208.CrossRefPubMedGoogle Scholar
  2. 2.
    Nandana S, Chung LW. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. Am J Clin Exp Urol. 2014;2(2):92–101.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904. doi: 10.1038/nm1469.CrossRefPubMedGoogle Scholar
  4. 4.
    Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med. 2007;13(12):535–41. doi: 10.1016/j.molmed.2007.10.004.CrossRefPubMedGoogle Scholar
  5. 5.
    Deakin NO, Turner CE. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell. 2011;22(3):327–41. doi: 10.1091/mbc.E10-09-0790.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost. 1994;71(5):533–43.PubMedGoogle Scholar
  7. 7.
    Itoh M, Nelson CM, Myers CA, Bissell MJ. Rap1 integrates tissue polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res. 2007;67(10):4759–66. doi: 10.1158/0008-5472.CAN-06-4246.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kooistra MR, Dube N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007;120(Pt 1):17–22. doi: 10.1242/jcs.03306.PubMedGoogle Scholar
  9. 9.
    Ohmstede CA, Farrell FX, Reep BR, Clemetson KJ, Lapetina EG. RAP2B: a RAS-related GTP-binding protein from platelets. Proc Natl Acad Sci USA. 1990;87(17):6527–31.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 1990;18(14):4281.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sun W, Zhang K, Zhang X, Lei W, Xiao T, Ma J, et al. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett. 2004;212(1):83–93. doi: 10.1016/j.canlet.2004.03.023.CrossRefPubMedGoogle Scholar
  12. 12.
    An Q, Pacyna-Gengelbach M, Schluns K, Deutschmann N, Guo S, Gao Y, et al. Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model for in vitro study of lung carcinogenesis. Int J Cancer. 2003;103(2):194–204. doi: 10.1002/ijc.10807.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, et al. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle. 2013;12(8):1279–91. doi: 10.4161/cc.24364.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56(3):307–17. doi: 10.1016/j.lungcan.2007.01.016.CrossRefPubMedGoogle Scholar
  15. 15.
    Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, et al. Identification and functional analysis of a novel candidate oncogene RAP2B in lung cancer. Chin J Lung Cancer. 2009;12(4):273–6. doi: 10.3779/j.issn.1009-3419.2009.04.03.Google Scholar
  16. 16.
    Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol. 2015;36(7):5031–8. doi: 10.1007/s13277-015-3154-3.CrossRefPubMedGoogle Scholar
  17. 17.
    Di J, Huang H, Wang Y, Qu D, Tang J, Cheng Q, et al. p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. J Cancer Res Clin Oncol. 2015;141(10):1791–8. doi: 10.1007/s00432-015-1948-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363. doi: 10.1038/srep12363.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peng YG, Zhang ZQ, Chen YB, Huang JA. Rap2b promotes proliferation, migration, and invasion of lung cancer cells. J Recept Sig Transduct Res. 2015;16:1–6. doi: 10.3109/10799893.2015.1122044.CrossRefGoogle Scholar
  20. 20.
    Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol. 1994;6(5):705–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen JS, Huang XH, Wang Q, Chen XL, Fu XH, Tan HX, et al. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2010;27(2):71–82. doi: 10.1007/s10585-010-9306-3.CrossRefPubMedGoogle Scholar
  22. 22.
    Cobb BS, Schaller MD, Leu TH, Parsons JT. Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol Cell Biol. 1994;14(1):147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carmona G, Gottig S, Orlandi A, Scheele J, Bauerle T, Jugold M, et al. Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood. 2009;113(2):488–97. doi: 10.1182/blood-2008-02-138438.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu L, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA. Radil controls neutrophil adhesion and motility through beta2-integrin activation. Mol Biol Cell. 2012;23(24):4751–65. doi: 10.1091/mbc.E12-05-0408.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tse KW, Dang-Lawson M, Lee RL, Vong D, Bulic A, Buckbinder L, et al. B cell receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem. 2009;284(34):22865–77. doi: 10.1074/jbc.M109.013169.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–9. doi: 10.1038/sj.bjc.6602258.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, et al. Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumour Biol. 2014;35(9):9387–94. doi: 10.1007/s13277-014-2174-8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, et al. KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Dis. 2013;4:e745. doi: 10.1038/cddis.2013.256.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Geng D, Zhao W, Feng Y, Liu J. Overexpression of Rab5a promotes hepatocellular carcinoma cell proliferation and invasion via FAK signaling pathway. Tumour Biol. 2015;. doi: 10.1007/s13277-015-4124-5.Google Scholar
  31. 31.
    Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep. 2011;26(1):177–84. doi: 10.3892/or.2011.1264.PubMedGoogle Scholar
  32. 32.
    Cai JJ, Qi ZX, Chen LC, Yao Y, Gong Y, Mao Y. miR-124 suppresses the migration and invasion of glioma cells in vitro via Capn4. Oncol Rep. 2015;. doi: 10.3892/or.2015.4355.Google Scholar
  33. 33.
    Meng XN, Jin Y, Yu Y, Bai J, Liu GY, Zhu J, et al. Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer. 2009;101(2):327–34. doi: 10.1038/sj.bjc.6605154.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ucar DA, Hochwald SN. FAK and interacting proteins as therapeutic targets in pancreatic cancer. Anti-Cancer Agents Med Chem. 2010;10(10):742–6.CrossRefGoogle Scholar
  35. 35.
    Lechertier T, Hodivala-Dilke K. Focal adhesion kinase and tumour angiogenesis. J Pathol. 2012;226(2):404–12. doi: 10.1002/path.3018.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jiehui Di
    • 1
  • Huan Cao
    • 1
  • Juangjuan Tang
    • 1
    • 4
  • Zheng Lu
    • 1
  • Keyu Gao
    • 1
  • Zhesi Zhu
    • 1
  • Junnian Zheng
    • 1
    • 2
    • 3
    Email author
  1. 1.Cancer InstituteXuzhou Medical CollegeXuzhouPeople’s Republic of China
  2. 2.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical CollegeXuzhouPeople’s Republic of China
  3. 3.Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical CollegeXuzhouPeople’s Republic of China
  4. 4.Department of OncologyThe Affiliated Hospital of Xuzhou Medical CollegeXuzhouPeople’s Republic of China

Personalised recommendations