Medical Oncology

, 33:39 | Cite as

BRAF mutation may have different prognostic implications in early- and late-stage colorectal cancer

  • Kuo-Hsing Chen
  • Yu-Lin Lin
  • Jau-Yu Liau
  • Jia-Huei Tsai
  • Li-Hui Tseng
  • Liang-In Lin
  • Jin-Tung Liang
  • Been-Ren Lin
  • Ji-Shiang Hung
  • Yih-Leong Chang
  • Kun-Huei YehEmail author
  • Ann-Lii Cheng
Original Paper


The prognostic implication of BRAF mutant colorectal cancer remains paradoxical. Records of BRAF mutant and wild-type colorectal cancer patients at all stages were reviewed. Clinicopathologic features, including microsatellite instability, CpG islands methylator phenotype, and overall survival, of these patients were analyzed. Between 2005 and 2013, 428 colorectal cancer patients were enrolled in this study. The overall survival between BRAF mutant and wild-type patients with early-stage (stages I and II) colorectal cancer differed nonsignificantly (P = 0.99). By contrast, in late-stage (stages III and IV) patients, the median overall survival of BRAF mutant patients (N = 25) was significantly poorer than that of BRAF wild-type (N = 207) patients (BRAF mutant: 21.3 months (95 % confidence interval [CI] 7.1–35.5); BRAF wild-type: 53.5 months (95 % CI 37.5–69.5), P < 0.0001). In early-stage patients, we found that BRAF mutation was significantly associated with CpG island methylator phenotype-positive (P < 0.001), and microsatellite instability-high status (P = 0.0013). Conversely, in late-stage patients, BRAF mutation was significantly associated with CpG island methylator phenotype-positive (P = 0.0015) and the right-side colon (P = 0.014). BRAF mutation may have different prognostic implications in early- and late-stage colorectal cancer.


Colorectal cancers BRAF gene mutation Prognosis Microsatellite instability (MSI) CpG island methylator phenotype (CIMP) 



The authors acknowledge statistical assistance provided by the Taiwan Clinical Trial Bioinformatics and Statistical Center, Training Center, and Pharmacogenomics Laboratory, which was founded by the National Research Program for Biopharmaceuticals, at the Ministry of Science and Technology of Taiwan; MOST 103-2325-B-002-033. The authors are grateful for the statistical assistance provided by the Department of Medical Research at National Taiwan University Hospital. This study was supported by grants from the Department of Health, Executive Yuan (DOH100-TD-C-111-001), Taipei, Taiwan.

Compliance of ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12032_2016_756_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 89 kb)


  1. 1.
    Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:2011–9.CrossRefGoogle Scholar
  5. 5.
    Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:4697–705.CrossRefGoogle Scholar
  6. 6.
    Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Van Cutsem E, Lenz HJ, Kohne CH, Heinemann V, Tejpar S, Melezinek I, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:692–700.CrossRefGoogle Scholar
  8. 8.
    Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48:1466–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.CrossRefPubMedGoogle Scholar
  10. 10.
    Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, et al. Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002;62:6451–5.PubMedGoogle Scholar
  11. 11.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62:6997–7000.PubMedGoogle Scholar
  13. 13.
    Gorden A, Osman I, Gai W, He D, Huang W, Davidson A, et al. Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res. 2003;63:3955–7.PubMedGoogle Scholar
  14. 14.
    Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:5705–12.CrossRefGoogle Scholar
  15. 15.
    Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377:2103–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology. 2010;56:167–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997;57:3370–4.PubMedGoogle Scholar
  19. 19.
    Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122:1376–87.CrossRefPubMedGoogle Scholar
  20. 20.
    Whitehall VL, Wynter CV, Walsh MD, Simms LA, Purdie D, Pandeya N, et al. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res. 2002;62:6011–4.PubMedGoogle Scholar
  21. 21.
    Toyota M, Issa JP. CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol. 1999;9:349–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53:1137–44.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K, et al. Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:4584–94.CrossRefGoogle Scholar
  25. 25.
    Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 2003;63:4561–7.PubMedGoogle Scholar
  27. 27.
    Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene. 2006;25:3357–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Tseng LH, Tang JL, Haley L, Beierl K, Gocke CD, Eshleman JR, et al. Microsatellite instability confounds engraftment analysis of hematopoietic stem-cell transplantation. Appl Immunohistochem Mol Morphol Off Publ Soc Appl Immunohistochem. 2014;22:416–20.CrossRefGoogle Scholar
  29. 29.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.PubMedGoogle Scholar
  30. 30.
    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.CrossRefPubMedGoogle Scholar
  31. 31.
    Lin CC, Lai YL, Lin TC, Chen WS, Jiang JK, Yang SH, et al. Clinicopathologic features and prognostic analysis of MSI-high colon cancer. Int J Colorectal Dis. 2012;27:277–86.CrossRefPubMedGoogle Scholar
  32. 32.
    Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:466–74.CrossRefGoogle Scholar
  33. 33.
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:609–18.CrossRefGoogle Scholar
  34. 34.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58:90–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer. 2005;5:199–209.CrossRefPubMedGoogle Scholar
  36. 36.
    Bettington M, Walker N, Clouston A, Brown I, Leggett B, Whitehall V. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62:367–86.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsai JH, Liau JY, Lin YL, Lin LI, Cheng YC, Cheng ML, et al. Traditional serrated adenoma has two pathways of neoplastic progression that are distinct from the sessile serrated pathway of colorectal carcinogenesis. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 2014;27:1375–85.Google Scholar
  38. 38.
    Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Stadler ZK. Diagnosis and management of DNA mismatch repair-deficient colorectal cancer. Hematol Oncol Clin North Am. 2015;29:29–41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kuo-Hsing Chen
    • 1
    • 9
    • 11
  • Yu-Lin Lin
    • 1
    • 11
  • Jau-Yu Liau
    • 2
  • Jia-Huei Tsai
    • 2
  • Li-Hui Tseng
    • 3
  • Liang-In Lin
    • 4
    • 10
  • Jin-Tung Liang
    • 5
    • 6
  • Been-Ren Lin
    • 5
    • 6
  • Ji-Shiang Hung
    • 7
  • Yih-Leong Chang
    • 2
    • 13
  • Kun-Huei Yeh
    • 1
    • 11
    • 12
    Email author
  • Ann-Lii Cheng
    • 1
    • 8
    • 11
  1. 1.Department of OncologyNational Taiwan University HospitalTaipeiTaiwan
  2. 2.Department of PathologyNational Taiwan University HospitalTaipeiTaiwan
  3. 3.Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
  4. 4.Department of Laboratory MedicineNational Taiwan University HospitalTaipeiTaiwan
  5. 5.Division of Colorectal SurgeryNational Taiwan University HospitalTaipeiTaiwan
  6. 6.Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
  7. 7.Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
  8. 8.Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
  9. 9.National Taiwan University Cancer CenterTaipeiTaiwan
  10. 10.Department of Clinical Laboratory Sciences and Medical Biotechnology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  11. 11.Graduate Institute of Oncology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  12. 12.Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  13. 13.Department and Graduate Institute of Pathology, College of MedicineNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations