Medical Oncology

, 33:36 | Cite as

Tracking metastatic breast cancer: the future of biology in biosensors

Original Paper

Abstract

Circulating tumour cells associated with breast cancer (brCTCs) represent cells that have the capability to establish aggressive secondary metastatic tumours. The isolation and characterization of CTCs from blood in a single device is the future of oncology diagnosis and treatment. The methods of enrichment of CTCs have primarily utilized simple biological interactions with bimodal reporting with biased high purity and low numbers or low purity and high background. In this review, we will discuss the advances in microfluidics that has allowed the use of more complex selection criteria and biological methods to identify CTC populations. We will also discuss a potential new method of selection based on the response of the oncogenic DNA repair pathways within brCTCs. This method would allow insight into not only the oncogenic signalling at play but the chemoresistance mechanisms that could guide future therapeutic intervention at any stage of disease progression.

Keywords

Circulating tumour cells DNA damage response Microfluidics EpCAM Metastatic breast cancer 

Notes

Compliance with ethical standards

Conflict of interest

All authors declared no conflicts of interest.

References

  1. 1.
    Hayashi N, Yamauchi H. Role of circulating tumor cells and disseminated tumor cells in primary breast cancer. Breast Cancer. 2012;19(2):110–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.CrossRefPubMedGoogle Scholar
  3. 3.
    Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S, et al. Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol. 2009;27(13):2177–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, et al. Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol. 2007;25(33):5194–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Azim HA Jr, Rothe F, Aura CM, Bavington M, Maetens M, Rouas G, et al. Circulating tumor cells and response to neoadjuvant paclitaxel and HER2-targeted therapy: a sub-study from the NeoALTTO phase III trial. Breast. 2013;22(6):1060–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Tibbe AG, Miller MC, Terstappen LW. Statistical considerations for enumeration of circulating tumor cells. Cytom Part A: J Int Soc Anal Cytol. 2007;71(3):154–62.CrossRefGoogle Scholar
  8. 8.
    Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Markiewicz A, Ksiazkiewicz M, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Szade J, et al. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLoS One. 2014;9(4):e93901.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41(4):1241–50.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res. 2010;16(20):5011–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Plouffe BD, Murthy SK. Perspective on microfluidic cell separation: a solved problem? Anal Chem. 2014;86(23):11481–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jain A, Munn LL. Determinants of leukocyte margination in rectangular microchannels. PLoS One. 2009;4(9):e7104.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Warkiani ME, Khoo BL, Wu L, Tay AK, Bhagat AA, Han J, et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc. 2016;11(1):134–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AA, Chaudhuri PK, et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip. 2014;14(1):128–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, et al. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv. 2014;32(4):761–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Ring AE, Zabaglo L, Ormerod MG, Smith IE, Dowsett M. Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer. 2005;92(5):906–12.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pachmann K, Clement JH, Schneider CP, Willen B, Camara O, Pachmann U, et al. Standardized quantification of circulating peripheral tumor cells from lung and breast cancer. Clin Chem Lab Med. 2005;43(6):617–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13(3):920–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Janni W, Rack B, Terstappen LW, Pierga JY, Taran FA, Fehm T, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res. 2016.Google Scholar
  23. 23.
    Ring A, Mineyev N, Zhu W, Park E, Lomas C, Punj V, et al. EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low. Oncotarget. 2015.Google Scholar
  24. 24.
    Harrell JC, Pfefferle AD, Zalles N, Prat A, Fan C, Khramtsov A, et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis. 2014;31(1):33–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sabatier R, Finetti P, Guille A, Adelaide J, Chaffanet M, Viens P, et al. Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Mol Cancer. 2014;13:228.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tinhofer I, Saki M, Niehr F, Keilholz U, Budach V. Cancer stem cell characteristics of circulating tumor cells. Int J Radiat Biol. 2014;90(8):622–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Rao CG, Chianese D, Doyle GV, Miller MC, Russell T, Sanders RA Jr, et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol. 2005;27(1):49–57.PubMedGoogle Scholar
  28. 28.
    Adams DL, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, et al. Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch® CTC test. Cytom Part A: J Int Soc Anal Cytol. 2015;87(2):137–44.CrossRefGoogle Scholar
  29. 29.
    Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, Rawal S, et al. Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep. 2014;4:7392.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ligthart ST, Coumans FA, Bidard FC, Simkens LH, Punt CJ, de Groot MR, et al. Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS One. 2013;8(6):e67148.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hyun KA, Lee TY, Lee SH, Jung HI. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens Bioelectron. 2015;67:86–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Deng G, Herrler M, Burgess D, Manna E, Krag D, Burke JF. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008;10(4):R69.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, et al. EpCAM-independent enrichment of circulating tumor cells in metastatic breast cancer. PLoS One. 2015;10(12):e0144535.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mitchell MJ, Castellanos CA, King MR. Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies. J Biomed Mater Res Part A. 2015;103(10):3407–18.CrossRefGoogle Scholar
  36. 36.
    Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 2013;5(180):180ra48.PubMedGoogle Scholar
  37. 37.
    Koboldt DC. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRefGoogle Scholar
  38. 38.
    Sampson ER, McMurray HR, Hassane DC, Newman L, Salzman P, Jordan CT, et al. Gene signature critical to cancer phenotype as a paradigm for anticancer drug discovery. Oncogene. 2013;32:3809–18.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang HY, Ahn S, Kim S, Park S, Jung D, Park S, et al. Detection of circulating tumor cell-specific markers in breast cancer patients using the quantitative RT-PCR assay. Int J Clin Oncol. 2015;20(5):878–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao S, Yang H, Zhang M, Zhang D, Liu Y, Liu Y, et al. Circulating tumor cells (CTCs) detected by triple-marker EpCAM, CK19, and hMAM RT-PCR and their relation to clinical outcome in metastatic breast cancer patients. Cell Biochem Biophys. 2013;65(2):263–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Pitroda SP, Pashtan IM, Logan HL, Budke B, Darga TE, Weichselbaum RR, et al. DNA repair pathway gene expression score correlates with repair proficiency and tumor sensitivity to chemotherapy. Sci Transl Med. 2014;6(229):1–10.Google Scholar
  42. 42.
    Davis L, Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci. 2014;111(10):E924–32.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim J-S, Krasieva TB, Kurumizaka H, Chen DJ, Malcolm A, Taylor R, et al. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol. 2005;170(3):341–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Howard SM, Yanez DA, Stark JM. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 2015;11(1):e1004943.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Truong LN, Li Y, Shi LZ, Hwang PY-H, He J, Wang H, et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci. 2013;110(19):7720–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004;32(12):3683–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McMullin RP, Wittner BS, Yang C, Denton-Schneider BR, Hicks D, Singavarapu R, et al. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity. Breast Cancer Res. 2014;16(2):1–10.CrossRefGoogle Scholar
  48. 48.
    Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle. 2011;19(8):1192–9.CrossRefGoogle Scholar
  49. 49.
    Oliveira-Costa JP, de Carvalho AF, da Silveira da GG, Amaya P, Wu Y, Park KJ, et al. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells. Oncotarget. 2015;6(25):20902–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sullivan K, Cramer-Morales K, McElroy DL, Ostrov DA, Haas K, Childers W, et al. Identification of a small molecule inhibitor of RAD52 by structure-based selection. PLoS One. 2016;11(1):e0147230.Google Scholar
  51. 51.
    Mishra AK, Dormi SS, Alaina M. Turchic DSW, Turchi JJ. Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochem Pharmacol. 2015;93(1):25–33.Google Scholar
  52. 52.
    Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, et al. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Cancer. 2009;8(133):1–13.Google Scholar
  53. 53.
    Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NMB, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the Ataxia-telangiectasia mutated kinase. Cancer Res. 2004;64:9152–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Horton TM, Jenkins G, Pati D, Zhang L, Dolan ME, Ribes-Zamora A, et al. Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine DNA methyltransferase activity. Mol Cancer Ther. 2009;8(8):2232–42.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, et al. Mechanism of radiosensitization by the Chk1/2 Inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 2010;70:4971–81.Google Scholar
  56. 56.
    Senra JM, Telfer BA, Cherry KE, McCrudden CM, Hirst DG, O'Connor MJ, et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther. 2011;10(10):1949–58.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Translational Brain Cancer Research LaboratoryQIMR Berghofer Medical Research InstituteHerstonAustralia
  2. 2.Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonAustralia

Personalised recommendations