Medical Oncology

, 33:18 | Cite as

Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy

  • Biagio Ricciuti
  • Clelia Mencaroni
  • Luca Paglialunga
  • Francesco Paciullo
  • Lucio Crinò
  • Rita Chiari
  • Giulio Metro
Review Article

Abstract

Recent advances in tiling array and high throughput analyses revealed that at least 87.3 % of the human genome is actively transcribed, though <3 % of the human genome encodes proteins. This unexpected truth suggests that most of the transcriptome is constituted by noncoding RNA. Among them, high-resolution microarray and massively parallel sequencing analyses identified long noncoding RNAs (lncRNAs) as nonprotein-coding transcripts. lncRNAs are largely polyadenylated and >200 nucleotides in length transcripts, involved in gene expression through epigenetic and transcriptional regulation, splicing, imprinting and subcellular transport. Although lncRNAs functions are largely uncharacterized, accumulating data indicate that they are involved in fundamental biological functions. Conversely, their dysregulation has increasingly been recognized to contribute to the development and progression of several human malignancies, especially lung cancer, which represents the leading cause of cancer-related deaths worldwide. We conducted a comprehensive review of the published literature focusing on lncRNAs function and disruption in nonsmall cell lung cancer biology, also highlighting their value as biomarkers and potential therapeutic targets. lncRNAs are involved in NSCLC pathogenesis, modulating fundamental cellular processes such as proliferation, cell growth, apoptosis, migration, stem cell maintenance and epithelial to mesenchymal transition, also serving as signaling transducers, molecular decoys and scaffolds. Also, lncRNAs represent very promising biomarkers in early-stage NSCLC patients and may become particularly useful in noninvasive screening protocols. lncRNAs may be used as predictive biomarkers for chemotherapy and targeted therapies sensitivity. Furthermore, selectively targeting oncogenic lncRNAs could provide a new therapeutic tool in treating NSCLC patients. lncRNAs disruption plays a pivotal role in NSCLC development and progression. These molecules also serve as diagnostic, prognostic and predictive biomarkers. Characterization of lncRNA genes and their mechanisms of action will enable us to develop a more comprehensive clinical approach, with the final goal to benefit our patients.

Keywords

NSCLC Protein-coding genes Long noncoding RNAs Cancer epigenetics Biomarkers 

Notes

Compliance ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Travis WD. The 2015 WHO classification of lung tumors. Pathologe. 2014;35(Supplement 2):188.CrossRefPubMedGoogle Scholar
  3. 3.
    Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    American Cancer Society. Non-small cell lung cancer survival rates by stage www.cancer.org/cancer/lungcancernonsmallcell/detailedguide/non-small-cell-lung-cancer-survival-rates. Date last updated: 03/04/15.
  7. 7.
    Ricciuti B, Mecca C, Crinò L, et al. Non-coding RNAs in lung cancer. Oncoscience. 2014;1(11):674–705.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev. 2007;21(1):11–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Enfield KS, Pikor LA, Martinez VD, et al. Mechanistic roles of noncoding RNAs in lung cancer biology and their clinical implications. Genet Res Int. 2012;2012:737416.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bassett AR, Akhtar A, Barlow DP, et al. Considerations when investigating lncRNA function in vivo. Elife. 2014;14(3):e03058.Google Scholar
  13. 13.
    Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129(4):773–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Feng J, Bi C, Clark BS, et al. The Evf2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA Gas5 is a growth arrest- and starvation- associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12(1):1–9.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Zhang J, Zhang P, Wang L, et al. Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim Biophys Sin. 2014;46(1):1–5.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Li L, Liu B, Wapinski OL, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013;5(1):3–12.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Liu XH, Liu ZL, Sun M, et al. The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer. 2013;13:464.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Zhao W, An Y, Liang Y, et al. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer. Eur Rev Med Pharmacol Sci. 2014;18(13):1930–6.PubMedGoogle Scholar
  27. 27.
    Zhuang Y, Wang X, Nguyen HT, et al. Induction of long intergenic non-coding RNA HOTAIR in lung cancer cells by type I collagen. J Hematol Oncol. 2013;6:35.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Liu Z, Sun M, Lu K, et al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21(WAF1/CIP1) expression. PLoS One. 2013;8(10):e77293.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Nakagawa T, Endo H, Yokoyama M, et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013;436(2):319–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Yang L, Lin C, Liu W, et al. ncRNA- and Pc2 methylation- dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6(12):1984–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Tano K, Mizuno R, Okada T, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584(22):4575–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Weber DG, Johnen G, Casjens S, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 2013;6:518.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Redis RS, Sieuwerts AM, Look MP, et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget. 2013;4(10):1748–62.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Wang CY, Hua L, Yao KH, et al. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Clin Exp Pathol. 2015;8(1):779–85.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Qiu M, Xu Y, Yang X, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol. 2014;35(6):5375–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Li J, Li P, Zhao W, et al. Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 2015;15:48.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Shahryari A, Jazi MS, Samaei NM, et al. Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet. 2015;6:196.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Hou Z, Zhao W, Zhou J, et al. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int J Biochem Cell Biol. 2014;53:380–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Park JY, Lee JE, Park JB, et al. Roles of long noncoding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat. 2014;2(1):1–6.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kondo M, Suzuki H, Ueda R, et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995;10(6):1193–8.PubMedGoogle Scholar
  47. 47.
    Chen B, Yu M, Chang Q, Lu Y, et al. Mdig derepresses H19 large intergenic non-coding RNA (lincRNA) by down-regulating H3K9me3 and heterochromatin. Oncotarget. 2014;4(9):1427–37.CrossRefGoogle Scholar
  48. 48.
    Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 2013;49(2):204–11.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Zhang L, Zhou XF, Pan GF, et al. Enhanced expression of long non-coding RNA ZXF1 promoted the invasion and metastasis in lung adenocarcinoma. Biomed Pharmacother. 2014;68(4):401–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Nie FQ, Sun M, Yang JS, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14(1):268–77.CrossRefPubMedGoogle Scholar
  51. 51.
    Yang YR, Zang SZ, Zhong CL, et al. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer. Int J Clin Exp Pathol. 2014;7(10):6929–35.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Khaitan D, Dinger ME, Mazar J, et al. The melanoma-upregulated long noncoding RNA SPRY4- IT1 modulates apoptosis and invasion. Cancer Res. 2011;71(11):3852–62.CrossRefPubMedGoogle Scholar
  53. 53.
    Tennis MA, Van Scoyk MM, Freeman SV, et al. Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Mol Cancer Res. 2010;8(6):833–43.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Sun M, Liu XH, Lu KH, et al. EZH2- mediated epigenetic suppression of long noncoding RNA SPRY4- IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Lu KH, Li W, Liu XH, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Wang PJ, Ren ZQ, Sun PY, et al. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen J, Wang R, Zhang K, et al. Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med. 2014;18(12):2425–36.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Flockhart RJ, Webster DE, Qu K, et al. BRAF (V600E) remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22(6):1006–14. doi: 10.1101/gr.140061.112 PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Sun M, Liu XH, Wang KM, et al. Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Mol Cancer. 2014;13:68.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Soltermann A. Epithelial-mesenchymal transition in non-small cell lung cancer. Pathologe. 2012;33(Suppl 2):311–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Kang YB, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Han L, Kong R, Yin DD, et al. Low expression of long noncoding RNA GAS6-AS1 predicts a poor prognosis in patients with NSCLC. Med Oncol. 2013;30(4):694.CrossRefPubMedGoogle Scholar
  65. 65.
    Vajkoczy P, Knyazev P, Kunkel A, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA. 2006;103(15):5799–804.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Lee Y, Lee M, Kim S. Gas6 induces cancer cell migration and epithelial-mesenchymal transition through upregulation of MAPK and Slug. Biochem Biophys Res Commun. 2013;434(1):8–14.CrossRefPubMedGoogle Scholar
  67. 67.
    Shi X, Sun M, Liu H, et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog. 2015;54(Suppl 1):E1–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18(12):6897–909.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Han L, Zhang EB, Yin DD, et al. Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis. 2015;6:e1665.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13(1):5–13.CrossRefPubMedGoogle Scholar
  72. 72.
    Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41(Database issue):D983–6.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8(3):123–4.CrossRefPubMedGoogle Scholar
  76. 76.
    Wang P, Lu S, Mao H, et al. Identification of biomarkers for the detection of early stage lung adenocarcinoma by microarray profiling of long noncoding RNAs. Lung Cancer. 2015;88(2):147–53.CrossRefPubMedGoogle Scholar
  77. 77.
    Yu H, Xu Q, Liu F, et al. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J Thorac Oncol. 2015;10(4):645–54.CrossRefPubMedGoogle Scholar
  78. 78.
    Yao Y, Li J, Wang L. Large intervening non-coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers. Int J Mol Sci. 2014;15(10):18985–99.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Cheng N, Cai W, Ren S, et al. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget. 2015;6(27):23582–93.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med. 2013;91(7):791–801.CrossRefPubMedGoogle Scholar
  81. 81.
    Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Biagio Ricciuti
    • 1
  • Clelia Mencaroni
    • 1
  • Luca Paglialunga
    • 1
  • Francesco Paciullo
    • 2
  • Lucio Crinò
    • 1
  • Rita Chiari
    • 1
  • Giulio Metro
    • 1
  1. 1.Medical Oncology, Santa Maria della Misericordia HospitalAzienda Ospedaliera di PerugiaPerugiaItaly
  2. 2.Internal Medicine, Santa Maria della Misericordia HospitalAzienda Ospedaliera di PerugiaPerugiaItaly

Personalised recommendations