Advertisement

Medical Oncology

, 33:15 | Cite as

Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT

  • Jianhong Zuo
  • Juan Wen
  • Mingsheng Lei
  • Meiling Wen
  • Sai Li
  • Xiu Lv
  • Zhaoyang LuoEmail author
  • Gebo WenEmail author
Original Paper

Abstract

The purpose of this study is to explore the role of hypoxia on the invasion and metastasis of laryngeal carcinoma. The invasion and migration ability of laryngeal cancer SCC10A cell was detected by transwell assay. Western blot was applied to analyze the expression of EMT-related proteins. Fifty-seven samples from postoperative patients with laryngeal cancer were collected to study. Immunohistochemistry was used to examine the expression of GLUT-1 and EMT-related proteins (Vim, E-cad, N-cad) in normal laryngeal squamous epithelial tissue, laryngeal cancer adjacent tissues and laryngeal squamous cell carcinoma tissues. Hypoxia promoted laryngeal cancer cell invasion and migration. Hypoxia also enhanced the expression of GLUT-1, vimentin and N-cad, which exist statistically significant correlation with the clinical staging and lymph node metastases (P < 0.05). The expression of GLUT-1 is positively correlated with Vim and N-cad expression in laryngeal squamous cell carcinoma tissues, but negatively correlated with E-cad expression. The patient survival rate with the positive expression of GLUT-1, Vim and N-cad becomes much shorter compared with those with negative expression of GLUT-1, Vim and N-cad (P < 0.05). Hypoxia promoted laryngeal cancer cell invasion and migration via EMT.

Keywords

Laryngeal carcinoma E-cadherin Vimentin Glucose transporter-1 Epithelial–mesenchymal transition 

Notes

Acknowledgments

This work was supported by National Nature Science Foundation of China (81272960), Key Research Program from Science and Technology Department of Hunan Province, China (2013WK2010).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Xia C-X, Zhu Q, Zhao H-X, Yan F, Li S-L, Zhang S-M. Usefulness of ultrasonography in assessment of laryngeal carcinoma. Br J Radiol. 2013;86(1030):20130343.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Markou K, Christoforidou A, Karasmanis I, Tsiropoulos G, Triaridis S, Constantinidis I, Vital V, Nikolaou A. Laryngeal cancer: epidemiological data from Νorthern Greece and review of the literature. Hippokratia. 2013;17(4):313–8.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Dan Yu, Jin C, Liu Y, Yang J, Zhao Y, Wang H, Zhao X, Cheng J, Liu X, Liu C. Clinical implications of cancer stem cell-like side population cells in human laryngeal cancer. Tumour Biol. 2013;34(6):3603–10.CrossRefGoogle Scholar
  4. 4.
    Harris AL. Hypoxia—a key regulatory factor in tumor growth. Nat Rev Cancer. 2002;2:38–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Tsaiand JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.CrossRefGoogle Scholar
  6. 6.
    Mendichovszky I, Jackson A. Imaging hypoxia in gliomas. Br J Radiol. 2011;84(Spec Iss 2):S145–58.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ponnusamy MP, Seshacharyulu P, Lakshmanan I, Vaz AP, Chugh S, Batra SK. Emerging role of mucins in epithelial to mesenchymal transition. Curr Cancer Drug Targets. 2013;13(9):945–56.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Steinestel K, Eder S, Schrader AJ, Steinestel J. Clinical significance of epithelial–mesenchymal transition. Clin Transl Med. 2014;3:17.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Qian X, Anzovino A, Kim S, Suyama K, Yao J, Hulit J, Agiostratidou G, Chandiramani N, McDaid HM, Nagi C, Cohen HW, Phillips GR, Norton L, Hazan RB. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–21.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD, Eugenin EA, Phillips GR, Hazan RB. N-cadherin regulates mammary tumor cell migration through Akt3 suppression. Oncogene. 2013;32(4):422–30.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Su Y, Li J, Witkiewicz AK, Brennan D, Neill T, Talarico J, Radice GL. N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene. 2012;31(41):4484–9.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011;13(3):R59.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ulirsch J, Fan C, Knafl G, Wu MJ, Coleman B, Perou CM, Swift-Scanlan T. Vimentin DNA methylation predicts survival in breast cancer. Breast Cancer Res Treat. 2013;. doi: 10.1007/s10549-012-2353-5.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP. Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell. 2011;22(14):2423–35.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Reinhold WC, Reimers MA, Lorenzi P, Ho J, Shankavaram UT, Ziegler MS, Bussey KJ, Nishizuka S, Ikediobi O, Pommier YG, Weinstein JN. Multifactorial regulation of E-cadherin expression: an integrative study. Mol Cancer Ther. 2010;9(1):1.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Zuo J-h, Zhu W, Li Mao-Yu, Li X-H, Yi H, Zeng G-Q, Wan X-X, He Q-Y, Li J-H, Jia-Quan Q, Xiao Z-Q. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 2011;112:2508–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Chou CC, Chuang HC, Salunke SB, Kulp SK, Chen CS. A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial–mesenchymal transition in cancer cells. Oncotarget. 2015;6(10):8271–85.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lu X, Kang Y. Hypoxia and hypoxia-inducible factors:master regulators of metastasis. Clin Cancer Res. 2010;16:5928–35.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 2012;19:102.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):220–32.CrossRefGoogle Scholar
  24. 24.
    Starska K, Forma E, Jóźwiak P, Bryś M, Lewy-Trenda I, Brzezińska-Błaszczyk E, Krześlak A. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis. Tumour Biol. 2015;36(4):2309–21.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT, Gao AC. Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocr Relat Cancer. 2014;21:435–42.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Rashmi R, DeSelm C, Helms C, Bowcock A, Rogers BE, Rader J, et al. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake. PLoS ONE. 2014;9:e92948. doi: 10.1371/journal.pone.0092948.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 2013;4:2935.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Chen XH, Bao YY, Zhou SH, Wang QY, Wei Y, Fan J. Glucose transporter-1 expression in CD133 + laryngeal carcinoma Hep-2 cells. Mol Med Rep. 2013;8:1695–700.PubMedGoogle Scholar
  29. 29.
    Eckert AW, Lautner MH, Schütze A, Taubert H, Schubert J, Bilkenroth U. Coexpression of hypoxia-inducible factor-1α and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology. 2011;58:1136–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Zuo J, Ishikawa T, Boutros S, Xiao Z, Humtsoe JO, Kramer RH. Bcl-2 over-expression induces a partial epithelial to mesenchymal transition and promotes squamous carcinoma cell invasion and metastasis. Mol Cancer Res. 2010;8(2):170–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Zuo J, Wen M, Lei M, Peng X, Yang X, Liu Z. MiR-210 links hypoxia with cell proliferation regulation in human laryngocarcinoma cancer. J Cell Biochem. 2015;116(6):1039–49.CrossRefPubMedGoogle Scholar
  32. 32.
    Yuan TZ, Zhang HH, Tang QF, Zhang Q, Li J, Liang Y, Huang LJ, Zheng RH, Deng J, Zhang XP. Prognostic value of kisspeptin expression in nasopharyngeal carcinoma. Laryngoscope. 2014;124(5):E167–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Li L, Wang J, Gao L, Gong L. Expression of paxillin in laryngeal squamous cell carcinoma and its prognostic value. Int J Clin Exp Pathol. 2015;8(8):9232–9.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Tu XP, Qiu QH, Chen LS, Luo XN, Lu ZM, Zhang SY, Chen SH. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma. BMC Cancer. 2015;15(743):1–7.Google Scholar
  35. 35.
    Xie J, Li D, Chen X, Wang F, Dong P. Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells. Oncol Lett. 2013;6(1):232–8.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Abdou AG, Eldien MM. Elsakka D.GLUT-1 expression in cutaneous basal and squamous cell carcinomas. Int J Surg Pathol. 2015;23(6):447–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Huang XQ, Chen X, Xie XX, Zhou Q, Li K, Li S, Shen LF, Su J. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(4):1651–66.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Eckert AW, Lautner MH, Taubert H, Schubert J, Bilkenroth U. Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep. 2008;20:1381–5.PubMedGoogle Scholar
  39. 39.
    Deron P, Vermeersch H, Mees G, Vangestel C, Pauwels P, Van de Wiele C. Expression and prognostic value of glucose transporters and hexokinases in tonsil and mobile tongue squamous cell carcinoma. Histol Histopathol. 2011;26:1165–72.PubMedGoogle Scholar
  40. 40.
    Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, Mizuno Y, Yokoi T, Yamada S. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep. 2011;25:1227–33.PubMedGoogle Scholar
  41. 41.
    Deron P, Vangestel C, Goethals I, De Potter A, Peeters M, Vermeersch H, Van de Wiele C. FDG uptake in primary squamous cell carcinoma of the head and neck. The relationship between overexpression of glucose transporters and hexokinases, tumour proliferation and apoptosis. Nuklearmedizin. 2011;50:15–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, Dong J, Qian C. Hypoxia induces epithelial–mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 2013;13:108.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mayer A, Höckel M, Schlischewsky N, Schmidberger H, Horn LC, Vaupel P. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix. Br J Cancer. 2013;108(2):402–8.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol. 2012;3(2):117–36.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Huang SG, Zhang LL, Niu Q, Xiang GM, Liu LL, Jiang DN, Liu F, Li Y, Pu X. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PLoS ONE. 2013;8(10):e77497.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305.CrossRefPubMedGoogle Scholar
  48. 48.
    Choi JY, Jang YS, Min SY, Song JY. Overexpression of MMP-9 and HIF-1alpha in breast cancer cells under hypoxic conditions. J Breast Cancer. 2011;14:88–95.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kaidi A, Williams AC, Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007;9:210–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, Wu Y, Yan Q, Liu S, Wang J. HIF-1α promotes epithelial–mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015;10(6):e0129603.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Medical SchoolUniversity of South ChinaHengyangPeople’s Republic of China
  2. 2.Nanhua HospitalUniversity of South ChinaHengyangPeople’s Republic of China
  3. 3.Department of Respiratory and Critical Care MedicineZhangjiajie City HospitalZhangjiajiePeople’s Republic of China

Personalised recommendations