Medical Oncology

, 32:265 | Cite as

Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis

  • Ting-Zi Hu
  • Li-Hua Huang
  • Can-Xia XuEmail author
  • Xiao-Ming Liu
  • Yu Wang
  • Jing Xiao
  • Li Zhou
  • Ling Luo
  • Xiao-Xia Jiang
Original Paper


Transcription factors (TFs) are crucial modulators of gene expression during the development and progression of gastric carcinoma. Helicobacter pylori (H. pylori) is one of the most significant risk factors of gastric carcinoma, and it is widely known that chronic inflammation with H. pylori infection triggers gastric carcinogenesis through inflammation-carcinoma chain [gastric carcinogenesis stages: non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)], but its mechanism regarding changed TFs remains unknown. In this study, we investigated the expressional profiles of 345 transcription factors in gastric mucosa of healthy volunteers and patients at different gastric carcinogenesis stages using protein/DNA array-based approach. The data demonstrated the up-regulated TFs such as GATA-3, AP4, c-Myc and Pbx1 in the gastric mucosa of GC patients compared with the healthy volunteers, while other TFs, particularly CCAAT and CACC, showed the consistently decreasing trend along the gastric carcinogenesis. The increased expressions of AP4, Pbx1 and C/EBPα were further validated by quantitative real-time PCR and Western blot in various H. pylori-infected models such as clinical gastric tissues, gastric epithelial cell lines and Mongolian gerbils. This study provides insights into and potential laws for gene transcriptional regulation by identifying potential TFs targets against the development of H. pylori-associated gastric carcinoma.


Transcription factors Helicobacter pylori Gastric carcinogenesis Protein/DNA array analysis AP4 Pbx1 C/EBPα 


H. pylori

Helicobacter pylori


Transcription factors


Normal gastric mucosa


Non-atrophic gastritis


Chronic atrophic gastritis


Intestinal metaplasia




Precancerous lesions of gastric cancer


Gastric carcinoma


Cytotoxin-associated gene A


Vacuolating cytotoxin gene A


GATA-binding protein 3


Activator protein 4 binding element


Pre-B-cell leukemia transcription factor 1


CCAAT/enhancer-binding protein α


CCAAT-binding protein


CACC-binding protein



This study is supported by a Grant from the National Natural Science Foundation of China (No. 81172301).

Author contributions

Hu T analyzed the data and wrote the manuscript; Huang L guided the analysis and manuscript writing; Xu CX designed the study, performed the endoscopic procedures, collected specimens and revised the manuscript; Liu X, Xiao J and Zhou L conducted the cell and Helicobacter pylori experiments; Wang Y collected and sent the specimens for array analysis; Luo L and Jiang X performed the experiment of Mongolian gerbils.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

12032_2015_711_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)
12032_2015_711_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Gorrell RJ, Guan J, Xin Y, Tafreshi MA, Hutton ML, McGuckin MA, et al. A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cell Microbiol. 2013;15(4):554–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol. 2012;2:92.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kim MH, Yoo HS, Kim MY, Jang HJ, Baek MK, Kim HR, et al. Helicobacter pylori stimulates urokinase plasminogen activator receptor expression and cell invasiveness through reactive oxygen species and NF-kappaB signaling in human gastric carcinoma cells. Int J Mol Med. 2007;19(4):689–97.PubMedGoogle Scholar
  5. 5.
    Tabassam FH, Graham DY, Yamaoka Y. Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cell Microbiol. 2009;11(1):70–82.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Nagy TA, Frey MR, Yan F, Israel DA, Polk DB, Peek RJ. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J Infect Dis. 2009;199(5):641–51.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB, et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102(30):10646–51.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Liu X, Cao K, Xu C, Hu T, Zhou L, Cao D, et al. GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis. Cancer Biol Ther. 2015;16(6):987–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–first american cancer society award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–40.PubMedGoogle Scholar
  10. 10.
    Correa P. Chronic gastritis: a clinico-pathological classification. Am J Gastroenterol. 1988;83(5):504–9.PubMedGoogle Scholar
  11. 11.
    Latchman DS. Transcription factors as potential targets for therapeutic drugs. Curr Pharm Biotechnol. 2000;1(1):57–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev. 2002;12(4):416–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996;384(6608):474–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 1997;272(34):21597–603.CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Furusawa J, Moro K, Motomura Y, Okamoto K, Zhu J, Takayanagi H, et al. Critical role of p38 and GATA3 in natural helper cell function. J Immunol. 2013;191(4):1818–26.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37(4):634–48.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Klein WR, Serafini N, van Nimwegen M, Vosshenrich CA, de Bruijn MJ, Fonseca PD, et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA. 2013;110(25):10240–5.CrossRefGoogle Scholar
  19. 19.
    Jacquemier J, Charafe-Jauffret E, Monville F, Esterni B, Extra JM, Houvenaeghel G, et al. Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res. 2009;11(2):R23.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138(1):57–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Higgins JP, Kaygusuz G, Wang L, Montgomery K, Mason V, Zhu SX, et al. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Am J Surg Pathol. 2007;31(5):673–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Ellis CL, Chang AG, Cimino-Mathews A, Argani P, Youssef RF, Kapur P, et al. GATA-3 immunohistochemistry in the differential diagnosis of adenocarcinoma of the urinary bladder. Am J Surg Pathol. 2013;37(11):1756–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Gulmann C, Paner GP, Parakh RS, Hansel DE, Shen SS, Ro JY, et al. Immunohistochemical profile to distinguish urothelial from squamous differentiation in carcinomas of urothelial tract. Hum Pathol. 2013;44(2):164–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Bayly R, Murase T, Hyndman BD, Savage R, Nurmohamed S, Munro K, et al. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol. 2006;26(17):6442–52.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS, et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development. 2001;128(18):3543–57.PubMedGoogle Scholar
  26. 26.
    DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R, et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood. 2001;98(3):618–26.CrossRefPubMedGoogle Scholar
  27. 27.
    Schnabel CA, Godin RE, Cleary ML. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol. 2003;254(2):262–76.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y, et al. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet. 2002;30(4):430–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Tomoeda M, Yuki M, Kubo C, Yoshizawa H, Kitamura M, Nagata S, et al. Role of Meis1 in mitochondrial gene transcription of pancreatic cancer cells. Biochem Biophys Res Commun. 2011;410(4):798–802.CrossRefPubMedGoogle Scholar
  30. 30.
    Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood. 1991;77(4):687–93.PubMedGoogle Scholar
  31. 31.
    Mo ML, Chen Z, Zhou HM, Li H, Hirata T, Jablons DM, et al. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer. J Exp Clin Cancer Res. 2013;32:29.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R, Pandha HS. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 2007;67(12):5806–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandez LC, Errico MC, Bottero L, Penkov D, Resnati M, Blasi F, et al. Oncogenic HoxB7 requires TALE cofactors and is inactivated by a dominant-negative Pbx1 mutant in a cell-specific manner. Cancer Lett. 2008;266(2):144–55.CrossRefPubMedGoogle Scholar
  34. 34.
    Shah N, Wang J, Selich-Anderson J, Graham G, Siddiqui H, Li X, et al. PBX1 is a favorable prognostic biomarker as it modulates 13-cis retinoic acid-mediated differentiation in neuroblastoma. Clin Cancer Res. 2014;20(16):4400–12.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Andeol Y, Nardeux PC, Daya-Grosjean L, Brison O, Cebrian J, Suarez H. Both N-ras and c-myc are activated in the SHAC human stomach fibrosarcoma cell line. Int J Cancer. 1988;41(5):732–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Craanen ME, Blok P, Top B, Boerrigter L, Dekker W, Offerhaus GJ, et al. Absence of ras gene mutations in early gastric carcinomas. Gut. 1995;37(6):758–62.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Victor T, Du Toit R, Jordaan AM, Bester AJ, van Helden PD. No evidence for point mutations in codons 12, 13, and 61 of the ras gene in a high-incidence area for esophageal and gastric cancers. Cancer Res. 1990;50(16):4911–4.PubMedGoogle Scholar
  38. 38.
    Hao Y, Zhang J, Lu Y, Yi C, Qian W, Cui J. The role of ras gene mutation in gastric cancer and precancerous lesions. J Tongji Med Univ. 1998;18(3):141–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Nishida J, Kobayashi Y, Hirai H, Takaku F. A point mutation at codon 13 of the N-ras oncogene in a human stomach cancer. Biochem Biophys Res Commun. 1987;146(1):247–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14(39):5962–8.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Ninomiya I, Yonemura Y, Matsumoto H, Sugiyama K, Kamata T, Miwa K, et al. Expression of c-myc gene product in gastric carcinoma. Oncology. 1991;48(2):149–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12(38):6207–11.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Sanz-Ortega J, Steinberg SM, Moro E, Saez M, Lopez JA, Sierra E, et al. Comparative study of tumor angiogenesis and immunohistochemistry for p53, c-ErbB2, c-myc and EGFr as prognostic factors in gastric cancer. Histol Histopathol. 2000;15(2):455–62.PubMedGoogle Scholar
  44. 44.
    Costa RL, Figueira SE, Mendes DFD, Leal MF, Guimaraes AC, Calcagno DQ, et al. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet. 2008;181(1):31–5.CrossRefGoogle Scholar
  45. 45.
    Kim SS, Meitner P, Konkin TA, Cho YS, Resnick MB, Moss SF. Altered expression of Skp2, c-Myc and p27 proteins but not mRNA after H. pylori eradication in chronic gastritis. Mod Pathol. 2006;19(1):49–58.CrossRefPubMedGoogle Scholar
  46. 46.
    Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA. 1997;94(10):5172–6.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Jung P, Menssen A, Mayr D, Hermeking H. AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA. 2008;105(39):15046–51.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Jung P, Hermeking H. The c-MYC-AP4-p21 cascade. Cell Cycle. 2009;8(7):982–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Hu BS, Zhao G, Yu HF, Chen K, Dong JH, Tan JW. High expression of AP-4 predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Tumour Biol. 2013;34(1):271–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Xinghua L, Bo Z, Yan G, Lei W, Changyao W, Qi L, et al. The overexpression of AP-4 as a prognostic indicator for gastric carcinoma. Med Oncol. 2012;29(2):871–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Nerlov C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 2007;17(7):318–24.CrossRefPubMedGoogle Scholar
  52. 52.
    Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA. 2004;101(36):13312–7.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG. Down-regulation and antiproliferative role of C/EBPalpha in lung cancer. Cancer Res. 2002;62(2):528–34.PubMedGoogle Scholar
  54. 54.
    Zhu S, Oh HS, Shim M, Sterneck E, Johnson PF, Smart RC. C/EBPbeta modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol. 1999;19(10):7181–90.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Sterneck E, Zhu S, Ramirez A, Jorcano JL, Smart RC. Conditional ablation of C/EBP beta demonstrates its keratinocyte-specific requirement for cell survival and mouse skin tumorigenesis. Oncogene. 2006;25(8):1272–6.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Regalo G, Resende C, Wen X, Gomes B, Duraes C, Seruca R, et al. C/EBP alpha expression is associated with homeostasis of the gastric epithelium and with gastric carcinogenesis. Lab Invest. 2010;90(8):1132–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Regalo G, Canedo P, Suriano G, Resende C, Campos ML, Oliveira MJ, et al. C/EBPbeta is over-expressed in gastric carcinogenesis and is associated with COX-2 expression. J Pathol. 2006;210(4):398–404.CrossRefPubMedGoogle Scholar
  58. 58.
    Sankpal NV, Moskaluk CA, Hampton GM, Powell SM. Overexpression of CEBPbeta correlates with decreased TFF1 in gastric cancer. Oncogene. 2006;25(4):643–9.PubMedGoogle Scholar
  59. 59.
    Cooper C, Henderson A, Artandi S, Avitahl N, Calame K. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators. Nucleic Acids Res. 1995;23(21):4371–7.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Parkin SE, Baer M, Copeland TD, Schwartz RC, Johnson PF. Regulation of CCAAT/enhancer-binding protein (C/EBP) activator proteins by heterodimerization with C/EBPgamma (Ig/EBP). J Biol Chem. 2002;277(26):23563–72.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ting-Zi Hu
    • 1
  • Li-Hua Huang
    • 2
  • Can-Xia Xu
    • 1
    • 4
    Email author
  • Xiao-Ming Liu
    • 1
  • Yu Wang
    • 3
  • Jing Xiao
    • 1
  • Li Zhou
    • 1
  • Ling Luo
    • 1
  • Xiao-Xia Jiang
    • 1
  1. 1.Department of GastroenterologyThird Xiangya Hospital of Central South UniversityChangshaChina
  2. 2.Center for Medical ExperimentThird Xiangya Hospital, Central South UniversityChangshaChina
  3. 3.Department of Internal MedicineThe Third People’s Hospital of HuaihuaHuaihuaChina
  4. 4.Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaChina

Personalised recommendations