Medical Oncology

, 32:85 | Cite as

RETRACTED ARTICLE: Decreased Warburg effect induced by ATP citrate lyase suppression inhibits tumor growth in pancreatic cancer

  • Haifeng Zong
  • Yang Zhang
  • Yong You
  • Tiantian Cai
  • Yehuang WangEmail author
Original Paper


ATP citrate lyase (ACLY) is responsible for the conversion of cytosolic citrate into acetyl-CoA and oxaloacetate, and the first rate-limiting enzyme involved in de novo lipogenesis. Recent studies have demonstrated that inhibition of elevated ACLY results in growth arrest and apoptosis in a subset of cancers; however, the expression pattern and underlying biological function of ACLY in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, overexpressed ACLY was more commonly observed in PDAC compared to normal pancreatic tissues. Kaplan–Meier survival analysis showed that high expression level of ACLY resulted in a poor prognosis of PDAC patients. Silencing of endogenous ACLY expression by siRNA in PANC-1 cells led to reduced cell viability and increased cell apoptosis. Furthermore, significant decrease in glucose uptake and lactate production was observed after ACLY was knocked down, and this effect was blocked by 2-deoxy-d-glucose, indicating that ACLY functions in the Warburg effect affect PDAC cell growth. Collectively, this study reveals that suppression of ACLY plays an anti-tumor role through decreased Warburg effect, and ACLY-related inhibitors might be potential therapeutic approaches for PDAC.


ACLY Pancreatic cancer Growth Warburg effect 



This research is supported by Health Bureau of Nanjing, China (Grant No. ZKX12040).

Conflict of interest

The authors declare that there is no conflict of interests.


  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi: 10.3322/caac.21208.CrossRefPubMedGoogle Scholar
  2. 2.
    The Lancet Oncology. Pancreatic cancer in the spotlight. Lancet Oncol. 2014;15(3):241. doi: 10.1016/S1470-2045(14)70097-X.CrossRefPubMedGoogle Scholar
  3. 3.
    Finley LW, Zhang J, Ye J, Ward PS, Thompson CB. SnapShot: cancer metabolism pathways. Cell Metab. 2013;17(3):466. doi: 10.1016/j.cmet.2013.02.016.CrossRefPubMedGoogle Scholar
  4. 4.
    Watson JA, Fang M, Lowenstein JM. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch Biochem Biophys. 1969;135(1):209–17.CrossRefPubMedGoogle Scholar
  5. 5.
    Yancy HF, Mason JA, Peters S, Thompson CE 3rd, Littleton GK, Jett M, et al. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women. J Carcinog. 2007;6:8. doi: 10.1186/1477-3163-6-8.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008;68(20):8547–54. doi: 10.1158/0008-5472.CAN-08-1235.CrossRefPubMedGoogle Scholar
  7. 7.
    Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, Moskaluk C, et al. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res. 2002;62(9):2625–9.PubMedGoogle Scholar
  8. 8.
    Turyn J, Schlichtholz B, Dettlaff-Pokora A, Presler M, Goyke E, Matuszewski M, et al. Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res. 2003;35(10):565–9. doi: 10.1055/s-2003-43500.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou Y, Bollu LR, Tozzi F, Ye X, Bhattacharya R, Gao G, et al. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol Cancer Ther. 2013;12(12):2782–91. doi: 10.1158/1535-7163.MCT-13-0098.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gao Y, Islam MS, Tian J, Lui VW, Xiao D. Inactivation of ATP citrate lyase by Cucurbitacin B: a bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Lett. 2014;349(1):15–25. doi: 10.1016/j.canlet.2014.03.015.CrossRefPubMedGoogle Scholar
  11. 11.
    Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–21. doi: 10.1016/j.ccr.2005.09.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369–72. doi: 10.1038/sj.bjc.6605007.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22. doi: 10.1038/sj.onc.1208773.CrossRefPubMedGoogle Scholar
  14. 14.
    Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.PubMedGoogle Scholar
  15. 15.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70. doi: 10.1016/j.cell.2012.01.058.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    MacDonald MJ, Smith AD 3rd, Hasan NM, Sabat G, Fahien LA. Feasibility of pathways for transfer of acyl groups from mitochondria to the cytosol to form short chain acyl-CoAs in the pancreatic beta cell. J Biol Chem. 2007;282(42):30596–606. doi: 10.1074/jbc.M702732200.CrossRefPubMedGoogle Scholar
  17. 17.
    MacDonald MJ, Longacre MJ, Langberg EC, Tibell A, Kendrick MA, Fukao T, et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia. 2009;52(6):1087–91. doi: 10.1007/s00125-009-1319-6.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709–14. doi: 10.1158/0008-5472.CAN-11-4112.CrossRefPubMedGoogle Scholar
  19. 19.
    Beigneux AP, Kosinski C, Gavino B, Horton JD, Skarnes WC, Young SG. ATP-citrate lyase deficiency in the mouse. J Biol Chem. 2004;279(10):9557–64. doi: 10.1074/jbc.M310512200.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A, et al. Inhibition of ATP citrate lyase induces an anticancer effect via reactive oxygen species: AMPK as a predictive biomarker for therapeutic impact. Am J Pathol. 2013;182(5):1800–10. doi: 10.1016/j.ajpath.2013.01.048.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee JH, Jang H, Lee SM, Lee JE, Choi J, Kim TW, et al. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. FEBS J. 2015;282(2):361–71. doi: 10.1111/febs.13139.CrossRefPubMedGoogle Scholar
  22. 22.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.CrossRefPubMedGoogle Scholar
  23. 23.
    Potapova IA, El-Maghrabi MR, Doronin SV, Benjamin WB. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry. 2000;39(5):1169–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Beckner ME, Fellows-Mayle W, Zhang Z, Agostino NR, Kant JA, Day BW, et al. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer. 2010;126(10):2282–95. doi: 10.1002/ijc.24918.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Haifeng Zong
    • 1
  • Yang Zhang
    • 1
  • Yong You
    • 2
  • Tiantian Cai
    • 1
  • Yehuang Wang
    • 1
    Email author
  1. 1.Department of Anorectal SurgeryNanjing Municipal Hospital of T.C.MNanjingPeople’s Republic of China
  2. 2.Zhangjiagang Wandong Anorectal HospitalZhangjiagangPeople’s Republic of China

Personalised recommendations