Advertisement

Medical Oncology

, 32:101 | Cite as

Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium

  • Jixiang Zhang
  • Jia Song
  • Dandan Wu
  • Jing Wang
  • Weiguo Dong
Original Paper

Abstract

Hesperetin, a flavonoid from citrus fruits, has been proved to possess biological activity on various types of human cancers. However, few related studies on hepatocellular carcinoma are available. In this study, we aimed to investigate the effect of hesperetin on hepatocellular carcinoma cells in vitro and in vivo and clarify its potentially specific mechanism. Compared with the control group, the proliferations of hepatocellular carcinoma cells in hesperetin groups were significantly inhibited (P < 0.05), and a dose- and time-dependent inhibition of cell viability was observed. When pretreated with H2O2 (1 mM) or N-acetyl-l-cysteine (5 mM), the inhibition of cell viability by hesperetin was enhanced or reduced, respectively (P < 0.05). Similarly, the levels of intracellular ROS, ATP and Ca2+ changed in different groups (P < 0.05). The results of Hoechst 33258 staining showed that the percentages of apoptotic cells in hesperetin groups are remarkably higher than that in control group (P < 0.05). And the results of Western blot showed that hesperetin caused an increase in the levels of cytosolic AIF, cytosolic Apaf-1, cytosolic Cyt C, caspase-3, caspase-9 and Bax and a decrease in that of Bcl-2, mitochondrial AIF, mitochondrial Apaf-1 and mitochondrial Cyt C (P < 0.05). Meanwhile, hesperetin significantly inhibited the growth of xenograft tumors. Our study suggests that hesperetin could inhibit the proliferation and induce the apoptosis of hepatocellular carcinoma via triggering the activation of the mitochondrial pathway by increasing the levels of intracellular ROS, ATP and Ca2+.

Keywords

Hesperetin Apoptosis Hepatic carcinoma Mitochondria Reactive oxygen species 

Notes

Acknowledgments

The study was supported by research grants from the Natural Science Foundation of Hubei Province (No. 2014CKB494).

Conflict of interest

None.

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Monteil M, Migianu-Griffoni E, Sainte-Catherine O, Di Benedetto M, Lecouvey M. Bisphosphonate prodrugs: synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Eur J Med Chem. 2014;77:56–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Tang TC, Man S, Lee CR, Xu P, Kerbel RS. Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia. 2010;12:264–74.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Gil-Izquierdo A, Gil MI, Ferreres F, Tomás-Barberán FA. In vitro availability of flavonoids and other phenolics in orange juice. J Agric Food Chem. 2001;49:1035–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;12(74):2157–84.CrossRefGoogle Scholar
  10. 10.
    Sambantham S, Radha M, Paramasivam A, Anandan B, Malathi R, Chandra SR, Jayaraman G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14:4347–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Ye L, Chan FL, Chen S, Leung LK. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. 2012;23:1230–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2-dimethylhydrazine-induced colon cancer. Phytother Res. 2013;27:999–1005.CrossRefPubMedGoogle Scholar
  14. 14.
    O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, Hou YC, Hseu YC. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60:522–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Haidari F, Ali Keshavarz S, Reza Rashidi M, Shahi M. Orange juice and hesperetin supplementation to hyperuricemic rats alter oxidative stress markers and xanthine oxidoreductase activity. J Clin Biochem Nutr. 2009;45:285–91.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, Menon VP, Nalini N. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line—a comparative study. Food Chem Toxicol. 2012;50:660–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32:491–509.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012:936486.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Matsuzawa A, Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal. 2005;7:472–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2 +). Cell Calcium. 2012;52:28–35.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem. 2012;287:31674–80.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Lewis A, Hayashi T, Su TP, Betenbaugh MJ. Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr. 2014;46:1–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.CrossRefPubMedGoogle Scholar
  25. 25.
    Felsenfeld A, Rodriguez M, Levine B. New insights in regulation of calcium homeostasis. Curr Opin Nephrol Hypertens. 2013;22:371–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J. 2013;280:5385–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Samanta K, Douglas S, Parekh AB. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS ONE. 2014;9:e101188.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Brinkkoetter PT, Song H, Lösel R, Schnetzke U, Gottmann U, Feng Y, Hanusch C, Beck GC, Schnuelle P, Wehling M, van der Woude FJ, Yard BA. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance. Cell Physiol Biochem. 2008;22:195–204.CrossRefPubMedGoogle Scholar
  30. 30.
    Voronina S, Okeke E, Parker T, Tepikin A. How to win ATP and influence Ca(2 +) signaling. Cell Calcium. 2014;55:131–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang Y, Wolfram J, Shen H, Fang X, Ferrari M. Hesperetin: an inhibitor of the transforming growth factor-β (TGF-β) signaling pathway. Eur J Med Chem. 2012;58:390–5.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Yang Y, Wolfram J, Boom K, Fang X, Shen H, Ferrari M. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct. 2013;31:374–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Q, Lesnefsky EJ. Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 2011;585:921–6.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jixiang Zhang
    • 1
  • Jia Song
    • 2
  • Dandan Wu
    • 1
  • Jing Wang
    • 1
  • Weiguo Dong
    • 1
  1. 1.Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
  2. 2.Xinjiang Tumor HospitalXinjiang Medical UniversityÜrümqiChina

Personalised recommendations