Medical Oncology

, 31:972 | Cite as

MiR-34c inhibits osteosarcoma metastasis and chemoresistance

  • Meng Xu
  • Hua Jin
  • Cheng-Xiong XuEmail author
  • Wen-Zhi Bi
  • Yan WangEmail author
Original Paper


Studies have shown that miR-34c is associated with metastasis and the chemoresponse of several cancers, but its role in osteosarcoma (OS) is unclear. Here, we investigated the role and mechanism of miR-34c in OS metastasis and chemoresponse. In this study, we found that the expression of miR-34c was significantly decreased in specimens from OS patients with a poor chemoresponse or metastasis compared to those with a good chemoresponse and no metastasis. The inhibition of miR-34c significantly stimulated OS cell invasion and chemoresistance in vitro. In contrast, restoring miR-34c significantly inhibited OS cell invasion and chemoresistance. Furthermore, we identified Notch1 and lymphoid enhancer-binding factor 1 (LEF1) as target genes of miR-34c in OS cells and demonstrated that Notch1 and LEF1 have a major role in the effects of miR-34c on OS cell chemosensitivity and metastasis. Taken together, our data indicate that miR-34c suppresses OS metastasis and chemoresistance by targeting Notch1 and LEF1. Restoring miR-34c may have important implications for the development of strategies for inhibiting metastasis and overcoming OS cell resistance to chemotherapy.


MiR-34c Osteosarcoma Metastasis Chemoresistance 



This work was supported by the National High Technology Research and Development Program of China (2011AA030101); and the China International Medical Foundation (CIMF-F-H001-240).

Conflict of interest

The authors have no conflict of interest to declare.


  1. 1.
    Messerschmitt PJ, Garcia RM, Abdul-Karim FW, Greenfield EM, Getty PJ. Osteosarcoma. J Am Acad Orthop Surg. 2009;17:515–27.PubMedGoogle Scholar
  2. 2.
    Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M, et al. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone. 2012;50:171–81.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF. The molecular pathogenesis of osteosarcoma: a review. Sarcoma. 2011;2011:959248.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Marulanda GA, Henderson ER, Johnson DA, Letson GD, Cheong D. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control. 2008;15:13–20.PubMedGoogle Scholar
  5. 5.
    Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 2012;72:230–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eu J Pharmacol. 2012;684:8–18.CrossRefGoogle Scholar
  10. 10.
    He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, et al. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Communi. 2009;388:35–40.CrossRefGoogle Scholar
  11. 11.
    van der Deen M, Taipaleenmaki H, Zhang Y, Teplyuk NM, Gupta A, Cinghu S, et al. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J Biol Chem. 2013;288:21307–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chem Pharmacol. 2013;71:1159–71.CrossRefGoogle Scholar
  13. 13.
    Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–303.PubMedCrossRefGoogle Scholar
  14. 14.
    Bacci G, Bertoni F, Longhi A, Ferrari S, Forni C, Biagini R, et al. Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer. 2003;97:3068–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Xu CX, Jere D, Jin H, Chang SH, Chung YS, Shin JY, et al. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med. 2008;178:60–73.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23:2004–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V. MiR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene. 2013;32:341–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med. 2010;16:257–67.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, et al. Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17:1101–8.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bhattacharya A, Ziebarth JD, Cui Y. SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res. 2013;41:D977–82.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mu X, Isaac C, Greco N, Huard J, Weiss K. Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Front Oncol. 2013;3:143.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hsu KW, Hsieh RH, Huang KH, Fen-Yau Li A, Chi CW, Wang TY, et al. Activation of the Notch1/STAT3/twist signaling axis promotes gastric cancer progression. Carcinogenesis. 2012;33:1459–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of OrthopaedicsThe General Hospital of Chinese People’s Liberation ArmyBeijingChina
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of South FloridaTampaUSA
  3. 3.Departments of Molecular OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations