Medical Oncology

, 31:914 | Cite as

c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer

Original Paper


Gastric cancer (GC) is one of the most frequent cancers worldwide. Recent studies have shown that long noncoding RNAs (lncRNAs) play critical roles in multiple biological processes, including oncogenesis. The present study aimed to evaluate the potential role of lncRNA H19 in GC. qRT-PCR was performed to investigate the expression of H19 in tumor tissues and corresponding non-tumor lung tissues from 80 patients with GC and in GC cell lines. The Kaplan–Meier method and Cox proportional hazards analysis were used to evaluate the association between H19 expression and overall survival time (OS). The biological significance of H19 was evaluated using siRNAs in vitro. We also constructed a c-Myc plasmid to investigate the cause of the altered expression of H19 in the progression of GC. The results show that lncRNA H19 is overexpressed in tumor tissues compared with adjacent normal tissues. An advanced tumor-node-metastasis stage was positively correlated with increased H19 expression (P < 0.001), and a high H19 expression was associated with poor OS and can be regarded as an independent predictor of the OS of GC patients (P = 0.042). MTT and colony formation assays confirmed that H19 expression affects GC cell proliferation in vitro. Furthermore, exogenous c-Myc significantly induces H19 expression, and the expression of H19 was positively correlated with the c-Myc levels in the 80 samples used in our study (Pearson correlation coefficient = −0.687). In conclusion, our study demonstrates that the altered expression of lncRNA H19, which is induced by c-Myc, is involved in the development and progression of GC by regulating cell proliferation and shows that H19 may be a potential diagnostic and prognostic target in patients with GC.


H19 Gastric cancer (GC) Long noncoding RNAs (lncRNAs) c-Myc oncogene 


Conflict of interest

The authors have declared that no conflicts of interest exist.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300. doi: 10.3322/caac.20073.PubMedCrossRefGoogle Scholar
  2. 2.
    Karim-Kos HE, de Vries E, Soerjomataram I, Lemmens V, Siesling S, Coebergh JW. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer. 2008;44(10):1345–89. doi: 10.1016/j.ejca.2007.12.015.PubMedCrossRefGoogle Scholar
  3. 3.
    Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319(5871):1787–9. doi: 10.1126/science.1155472.PubMedCrossRefGoogle Scholar
  4. 4.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi: 10.1038/nature07672.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Tzankov A, Gschwendtner A, Augustin F, Fiegl M, Obermann EC, Dirnhofer S, et al. Diffuse large B-cell lymphoma with overexpression of cyclin e substantiates poor standard treatment response and inferior outcome. Clin Cancer Res. 2006;12(7 Pt 1):2125–32. doi: 10.1158/1078-0432.CCR-05-2135.PubMedCrossRefGoogle Scholar
  6. 6.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. doi: 10.1101/gr.132159.111.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29(3):1810–6. doi: 10.1007/s12032-011-0004-z.PubMedCrossRefGoogle Scholar
  9. 9.
    Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-Lail R, Fellig Y, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010;1803(4):443–51. doi: 10.1016/j.bbamcr.2010.01.010.PubMedCrossRefGoogle Scholar
  10. 10.
    Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129(4):773–9. doi: 10.1002/ijc.26052.PubMedCrossRefGoogle Scholar
  11. 11.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi: 10.4161/rna.20481.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351(6322):153–5. doi: 10.1038/351153a0.PubMedCrossRefGoogle Scholar
  13. 13.
    Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol Cell Biol. 1998;18(6):3466–74.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Reid LH, Davies C, Cooper PR, Crider-Miller SJ, Sait SN, Nowak NJ, et al. A 1-Mb physical map and PAC contig of the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region. Genomics. 1997;43(3):366–75. doi: 10.1006/geno.1997.4826.PubMedCrossRefGoogle Scholar
  15. 15.
    DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64(4):849–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 1998;12(23):3693–702.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013;280(7):1709–16. doi: 10.1111/febs.12185.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86. doi: 10.1093/carcin/bgs381.PubMedCrossRefGoogle Scholar
  19. 19.
    Sorin V, Ohana P, Gallula J, Birman T, Matouk I, Hubert A, et al. H19-promoter-targeted therapy combined with gemcitabine in the treatment of pancreatic cancer. ISRN Oncol. 2012;2012:351750. doi: 10.5402/2012/351750.
  20. 20.
    Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, et al. H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol. 1998;153(5):1597–607. doi: 10.1016/S0002-9440(10)65748-3.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995;10(6):1193–8.PubMedGoogle Scholar
  22. 22.
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007;2(9):e845. doi: 10.1371/journal.pone.0000845.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. doi: 10.1158/0008-5472.CAN-06-0037.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9(7):1002–10. doi: 10.4161/rna.20807.PubMedCrossRefGoogle Scholar
  25. 25.
    Nie L, Wu HJ, Hsu JM, Chang SS, Labaff AM, Li CW, et al. Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res. 2012;4(2):127–50.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4(127):127rv3. doi: 10.1126/scitranslmed.3003180.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Salagierski M, Schalken JA. Molecular diagnosis of prostate cancer: PCA3 and TMPRSS2: ERG gene fusion. J Urol. 2012;187(3):795–801. doi: 10.1016/j.juro.2011.10.133.PubMedGoogle Scholar
  28. 28.
    Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50. doi: 10.1245/s10434-011-1581-y.PubMedCrossRefGoogle Scholar
  29. 29.
    Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58. doi: 10.1016/j.cell.2010.09.001.PubMedCrossRefGoogle Scholar
  30. 30.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72. doi: 10.1073/pnas.0904715106.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18(19):3004–16. doi: 10.1038/sj.onc.1202746.PubMedCrossRefGoogle Scholar
  32. 32.
    McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell. 1998;94(3):363–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem. 2002;277(42):40156–62. doi: 10.1074/jbc.M207441200.PubMedCrossRefGoogle Scholar
  34. 34.
    Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T, et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 2003;17(9):1101–14. doi: 10.1101/gad.1066903.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW, et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol. 2003;13(10):882–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA. 2003;100(14):8164–9. doi: 10.1073/pnas.1332764100.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29. doi: 10.1101/gad.1067003.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
  2. 2.Department of Oncology, Xuzhou Central Hospital, Affiliated Xuzhou Hospital, College of MedicineSoutheast UniversityXuzhouChina
  3. 3.Central LaboratoryThe Second Affiliated Hospital of Southeast UniversityNanjingChina
  4. 4.Department of Oncology, Nanjing First HospitalNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations