Advertisement

Medical Oncology

, 31:879 | Cite as

MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1

  • Jiang Yan
  • Xiaoqiang Guo
  • Jiazeng Xia
  • Tin Shan
  • Chen Gu
  • Zheng Liang
  • Wei Zhao
  • Shimao Jin
Original Paper

Abstract

The long non-coding RNA MEG3 has been reported to be a tumor suppressor in a number of malignant tumors including gastric cancer. Several studies have shown that the regulation of MEG3 may attribute to the promoter hypermethylation. However, the mechanism of MEG3 regulation in gastric cancer is still not well understood. MiR-148a can suppress gastric tumorigenesis through regulating the expression of target genes such as DNA methyltransferase 1(DNMT-1). We examined the expression of MEG3 in 52 gastric cancer samples using quantitative real-time PCR and found the down-regulation of MEG3 in both gastric cancer tissues and cell lines. The positive correlation of MEG3 and miR-148a was further confirmed in SGC-7901 and BGC-823 gastric cancer cell lines. Hypermethylation of MEG3 differentially methylated regions was identified by methylation-specific PCR, and MEG3 expression was increased with the inhibition of methylation with siRNA to DNMT-1 in gastric cancer cells. In addition, transfection of MEG3 siRNA into gastric cancer cells diminished the suppression of proliferation induced by overexpression of miR-148a. Our results suggest that the suppression of miR-148a may contribute to the down-regulation of MEG3 in gastric cancer by modulation of DNMT-1.

Keywords

MEG3 miR-148a Hypermethylation DNMT-1 

Notes

Acknowledgments

This work was supported by Six Major Talent Summit of Jiangsu Province (2011-WSK-013).

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.PubMedCrossRefGoogle Scholar
  2. 2.
    Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87. doi: 10.1038/onc.2011.621.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wylie AA, Murphy SK, Orton TC, Jirtle RL. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000;10(11):1711–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26. doi: 10.1210/jc.2003-030222.PubMedCrossRefGoogle Scholar
  5. 5.
    Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS ONE. 2012;7(11):e49462. doi: 10.1371/journal.pone.0049462.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461. doi: 10.1186/1471-2407-13-461.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol BioSyst. 2013;9(3):407–11. doi: 10.1039/c2mb25386k.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawakami T, Chano T, Minami K, Okabe H, Okada Y, Okamoto K. Imprinted DLK1 is a putative tumor suppressor gene and inactivated by epimutation at the region upstream of GTL2 in human renal cell carcinoma. Hum Mol Genet. 2006;15(6):821–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8. doi: 10.1158/0008-5472.CAN-09-3885.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hu YC, Yang ZH, Zhong KJ, Niu LJ, Pan XJ, Wu DC, et al. Alteration of transcriptional profile in human bronchial epithelial cells induced by cigarette smoke condensate. Toxicol Lett. 2009;190(1):23–31. doi: 10.1016/j.toxlet.2009.06.860.PubMedCrossRefGoogle Scholar
  11. 11.
    Katrincsakova B, Takeda H, Urbankova H, Michaux L, Jarosova M, Vandenberghe P, et al. Methylation analysis of the imprinted DLK1-GTL2 domain supports the random parental origin of the IGH-involving del(14q) in B-cell malignancies. Epigenetics. 2009;4(7):469–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi: 10.1038/nature02871.PubMedCrossRefGoogle Scholar
  13. 13.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87. doi: 10.1016/j.cell.2012.02.005.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wei B, Song Y, Zhang Y, Hu M. microRNA-449a functions as a tumor-suppressor in gastric adenocarcinoma by targeting Bcl-2. Oncol Lett. 2013;6(6):1713–8. doi: 10.3892/ol.2013.1609.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Zhang J, Kuai X, Song M, Chen X, Yu Z, Zhang H, et al. microRNA-32 inhibits the proliferation and invasion of the SGC-7901 gastric cancer cell line. Oncol Lett. 2014;7(1):270–4. doi: 10.3892/ol.2013.1667.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, et al. Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res. 2013;. doi: 1078-0432.Google Scholar
  18. 18.
    Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L, et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol. 2012;29(4):2701–9. doi: 10.1007/s12032-011-0134-3.PubMedCrossRefGoogle Scholar
  19. 19.
    Zuo J, Xia J, Ju F, Yan J, Zhu A, Jin S, et al. MicroRNA-148a can regulate runt-related transcription factor 3 gene expression via modulation of DNA methyltransferase 1 in gastric cancer. Mol Cells. 2013;35(4):313–9. doi: 10.1007/s10059-013-2314-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hubertus J, Lacher M, Rottenkolber M, Muller-Hocker J, Berger M, Stehr M, et al. Altered expression of imprinted genes in Wilms tumors. Oncol Rep. 2011;25(3):817–23. doi: 10.3892/or.2010.1113.PubMedCrossRefGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.PubMedCrossRefGoogle Scholar
  22. 22.
    Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307. doi: 10.1016/j.cell.2013.02.012.PubMedCrossRefGoogle Scholar
  23. 23.
    Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12. doi: 10.1016/j.molcel.2013.08.027.PubMedCrossRefGoogle Scholar
  24. 24.
    Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS ONE. 2013;8(8):e70372. doi: 10.1371/journal.pone.0070372.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Sun M, Xia R, Jin F, Xu T, Liu Z, De W, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol. 2013;. doi: 10.1007/s13277-013-1142-z.Google Scholar
  26. 26.
    McMurray EN, Schmidt JV. Identification of imprinting regulators at the Meg3 differentially methylated region. Genomics. 2012;100(3):184–94. doi: 10.1016/j.ygeno.2012.06.001.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Qu C, Jiang T, Li Y, Wang X, Cao H, Xu H, et al. Gene expression and IG-DMR hypomethylation of maternally expressed gene 3 in developing corticospinal neurons. Gene Expr Patterns. 2013;13(1–2):51–6. doi: 10.1016/j.gep.2012.11.003.PubMedCrossRefGoogle Scholar
  28. 28.
    Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–6. doi: 10.1038/onc.2011.193.PubMedCrossRefGoogle Scholar
  29. 29.
    Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99. doi: 10.1186/1752-0509-5-99.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jiang Yan
    • 1
    • 2
  • Xiaoqiang Guo
    • 1
    • 2
  • Jiazeng Xia
    • 1
    • 2
  • Tin Shan
    • 1
  • Chen Gu
    • 1
  • Zheng Liang
    • 1
  • Wei Zhao
    • 1
  • Shimao Jin
    • 3
  1. 1.Department of General SurgeryNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina
  2. 2.Translational Medicine CenterNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina
  3. 3.Department of GastroenterologyNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina

Personalised recommendations