Medical Oncology

, 32:409 | Cite as

Texosome-anchored superantigen triggers apoptosis in original ovarian cancer cells

  • Hamideh Mahmoodzadeh Hosseini
  • Jafar Soleimanirad
  • Elnaz Mehdizadeh Aghdam
  • Mohsen Amin
  • Abbas Ali Imani Fooladi
Original Paper


Texosomes, nano-endosomal vesicles, are candidates for cancer immunotherapy due to their immunostimulating properties. We designed a new structure based on texosome and staphylococcal enterotoxin B (SEB) and assessed its cytotoxic impact on an ovarian cell line. Texosomes were isolated from tumor cells, and SEB was anchored onto by protein transfer method. MTT assay and Hoechst staining were used to identify the cytotoxic and apoptotic effects of this compound on treated cells with different concentrations of texosome–SEB (TEX–SEB). Moreover, the expression rate of bcl-2, bax, bak, bcl-xl and the activity of caspase-3 and caspase-9 were investigated. Treatments of the cells with 0.5, 2.5 and 10 μg/100 μl TEX–SEB were significantly cytotoxic within 24 h (p < 0.001). Hoechst staining revealed that all tested concentrations caused apoptosis after 24 h compared with the control cells (p < 0.001). Furthermore, it was found that treatment with all examined concentrations of TEX–SEB enhanced caspase-9 activity after 24 and 48 h, while caspase-3 activity was increased upon treatment with only 0.5 and 2.5 μg/100 μl of TEX–SEB after 24 h (p < 0.001). None of the concentrations of TEX–SEB affected the expression of the cancer-promoting genes. Our construct, the TEX–SEB, is a new model being able to create cytostatic properties on cancer cells.


Ovarian cancer Apoptosis Texosome Staphylococcus enterotoxin B Immunotherapy 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Peng P, Yan Y, Keng S. Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncol Rep. 2011;25(3):749–62. doi: 10.3892/or.2010.1119.PubMedGoogle Scholar
  2. 2.
    Alberts DS. Treatment of refractory and recurrent ovarian cancer. Semin Oncol. 1999;26(1 Suppl 1):8–14.PubMedGoogle Scholar
  3. 3.
    McGuire WP, Ozols RF. Chemotherapy of advanced ovarian cancer. Semin Oncol. 1998;25(3):340–8.PubMedGoogle Scholar
  4. 4.
    Rieger J, Freichels H, Imberty A, Putaux JL, Delair T, Jérôme C, et al. Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties. Biomacromolecules. 2009;10(3):651–7. doi: 10.1021/bm801492c.PubMedCrossRefGoogle Scholar
  5. 5.
    Hosseini HM, Fooladi AA, Nourani MR, Ghanezadeh F. Role of Exosome in infectious disease. Inflamm Allergy Drug Targets. 2013;12(1):29–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008;9(6):871–81. doi: 10.1111/j.1600-0854.2008.00734.x.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cho JA, Yeo DJ, Son HY, Kim HW, Jung DS, Ko JK, et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer. 2005;114(4):613–22. doi: 10.1002/ijc.20757.PubMedCrossRefGoogle Scholar
  8. 8.
    Tan A, De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int J Nanomed. 2010;5:889–900. doi: 10.2147/ijn.s13402.Google Scholar
  9. 9.
    Ristorcelli E, Beraud E, Mathieu S, Lombardo D, Verine A. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int J Cancer. 2009;125(5):1016–26. doi: 10.1002/ijc.24375.PubMedCrossRefGoogle Scholar
  10. 10.
    Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J. 2008;22(9):3358–69. doi: 10.1096/fj.07-102855.PubMedCrossRefGoogle Scholar
  11. 11.
    Mahmoodzadeh Hosseini H, Ali Imani Fooladi A, Soleimanirad J, Reza Nourani M, Mahdavi M. Exosome/staphylococcal enterotoxin B, an anti tumor compound against pancreatic cancer. J BUON. 2014;19(2):440–8.PubMedGoogle Scholar
  12. 12.
    Mahmoodzadeh Hosseini H, Imani Fooladi AA, Soleimanirad J, Nourani MR, Davaran S, Mahdavi M. Staphylococcal entorotoxin B anchored exosome induces apoptosis in negative estrogen receptor breast cancer cells. Tumour Biol. 2014;35(4):3699–707. doi: 10.1007/s13277-013-1489-1.PubMedCrossRefGoogle Scholar
  13. 13.
    Choi YW, Kotzin B, Herron L, Callahan J, Marrack P, Kappler J. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc Natl Acad Sci. 1989;86(22):8941–5.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kappler J, Kotzin B, Herron L, Gelfand EW, Bigler RD, Boylston A, et al. V beta-specific stimulation of human T cells by staphylococcal toxins. Science. 1989;244(4906):811–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Imani Fooladi AA, Sattari M, Hassan ZM, Mahdavi M, Azizi T, Horii A. In vivo induction of necrosis in mice fibrosarcoma via intravenous injection of type B staphylococcal enterotoxin. Biotechnol Lett. 2008;30(12):2053–9. doi: 10.1007/s10529-008-9805-3.CrossRefGoogle Scholar
  16. 16.
    Imani Fooladi AA, Sattari M, Nourani MR. Synergistic effects between Staphylococcal enterotoxin type B and monophosphoryl lipid A against mouse fibrosarcoma. J BUON. 2010;15(2):340–7.PubMedGoogle Scholar
  17. 17.
    Fooladi AAI, Sattari M, Nourani MR. Study of T-cell stimulation and cytokine release induced by Staphylococcal enterotoxin type B and monophosphoryl lipid A. Arch Med Sci. 2009;3:335–41.Google Scholar
  18. 18.
    Higgs BW, Dileo J, Chang WE, Smith HB, Peters OJ, Hammamieh R, et al. Modeling the effects of a Staphylococcal Enterotoxin B (SEB) on the apoptosis pathway. BMC Microbiol. 2006;6:48. doi: 10.1186/1471-2180-6-48.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48. doi: 10.1007/s00262-011-0979-5.PubMedCrossRefGoogle Scholar
  20. 20.
    McHugh RS, Nagarajan S, Wang YC, Sell KW, Selvaraj P. Protein transfer of glycosyl-phosphatidylinositol-B7-1 into tumor cell membranes: a novel approach to tumor immunotherapy. Cancer Res. 1999;59(10):2433–7.PubMedGoogle Scholar
  21. 21.
    Delcayre A, Estelles A, Sperinde J, Roulon T, Paz P, Aguilar B, et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis. 2005;35(2):158–68. doi: 10.1016/j.bcmd.2005.07.003.PubMedCrossRefGoogle Scholar
  22. 22.
    Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 1998;273(32):20121–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278(13):10963–72. doi: 10.1074/jbc.M207550200.PubMedCrossRefGoogle Scholar
  24. 24.
    Xiu F, Cai Z, Yang Y, Wang X, Wang J, Cao X. Surface anchorage of superantigen SEA promotes induction of specific antitumor immune response by tumor-derived exosomes. J Mol Med. 2007;85(5):511–21. doi: 10.1007/s00109-006-0154-1.PubMedCrossRefGoogle Scholar
  25. 25.
    Nagarajan S, Anderson M, Ahmed SN, Sell KW, Selvaraj P. Purification and optimization of functional reconstitution on the surface of leukemic cell lines of GPI-anchored Fc gamma receptor III. J Immunol Methods. 1995;184(2):241–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258(6):479–517. doi: 10.1111/j.1365-2796.2005.01570.x.PubMedCrossRefGoogle Scholar
  27. 27.
    Sharief M, Gani ZH. Garden cress lepidium sativum seeds as oral contraceptive plant in mice. Saudi Med J. 2004;25(7):965–6.PubMedGoogle Scholar
  28. 28.
    Ferrari D, Pinton P, Campanella M, Callegari MG, Pizzirani C, Rimessi A, et al. Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochem Biophys Res Commun. 2010;391(1):575–81. doi: 10.1016/j.bbrc.2009.11.101.PubMedCrossRefGoogle Scholar
  29. 29.
    Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z. ER-Golgi network—a future target for anti-cancer therapy. Leuk Res. 2009;33(11):1440–7. doi: 10.1016/j.leukres.2009.05.025.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hamideh Mahmoodzadeh Hosseini
    • 1
  • Jafar Soleimanirad
    • 2
  • Elnaz Mehdizadeh Aghdam
    • 3
  • Mohsen Amin
    • 4
  • Abbas Ali Imani Fooladi
    • 1
  1. 1.Applied Microbiology Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Pharmaceutical Biotechnology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations