Medical Oncology

, 31:164 | Cite as

Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer

  • Zhengchuan FuEmail author
  • Fang Qian
  • Xuhuan Yang
  • Hailiang Jiang
  • Yu Chen
  • Sihai Liu
Original Paper


Previous studies have revealed the significance of circulating microRNAs as biomarkers for cancers. The aim of this study was to detect the levels of circulating microRNA-222 (miR-222) in plasma of gastric cancer (GC) patients and evaluate its diagnostic and prognostic value. Levels of circulating miR-222 were detected by using qRT-PCR in plasma of 114 GC patients, 36 chronic atrophic gastritis (CAG) patients and 56 healthy controls. The result showed that the expression of circulating miR-222 in plasma was significantly upregulated in GC compared with CAG and healthy controls (all at P < 0.001). And its high level was significantly correlated with clinical stages (P < 0.001) and lymph nodes metastasis (P = 0.009). The receiver operating characteristics (ROC) curve analyses revealed that miR-222 had considerable diagnostic accuracy, yielded an AUC (the areas under the ROC curve) of 0.850 with 66.1 % sensitivity and 88.3 % specificity in discriminating GC from healthy controls. Moreover, Kaplan–Meier analysis demonstrated a correlation between increased circulating miR-222 level and reduced disease-free survival (P = 0.016) and overall survival (P = 0.012). In multivariate analysis stratified for known prognostic variables, circulating miR-222 was identified as an independent prognostic marker. In conclusion, our findings suggested that circulating miR-222 in plasma might be a potential and useful noninvasive biomarker for the early detection and prognosis of GC.


Gastric cancer Circulating miR-222 Detection Prognosis 


Conflict of interest



  1. 1.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin. 2004;54(1):8–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang J, Yu JC, Kang WM, Ma ZQ. Treatment strategy for early gastric cancer. Surg Oncol. 2012;21(2):119–23. doi: 10.1016/j.suronc.2010.12.004.PubMedCrossRefGoogle Scholar
  3. 3.
    Carpelan-Holmstrom M, Louhimo J, Stenman UH, Alfthan H, Haglund C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 2002;22(4):2311–6.PubMedGoogle Scholar
  4. 4.
    Schneider J, Schulze G. Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res. 2003;23(6D):5089–93.PubMedGoogle Scholar
  5. 5.
    Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215–39. doi: 10.1146/annurev.genom.8.080706.092351.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi: 10.1016/j.ydbio.2006.08.028.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. doi: 10.1038/cr.2008.282.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wan C, Shen Y, Yang T, Wang T, Chen L, Wen F. Diagnostic value of microRNA for pancreatic cancer: a meta-analysis. Arch Med Sci. 2012;8(5):749–55. doi: 10.5114/aoms.2012.31609.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kishimoto T, Eguchi H, Nagano H, Kobayashi S, Akita H, Hama N, et al. Plasma miR-21 is a novel diagnostic biomarker for biliary tract cancer. Cancer Sci. 2013;104(12):1626–31. doi: 10.1111/cas.12300.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou XJ, Dong ZG, Yang YM, Du LT, Zhang X, Wang CX. Limited diagnostic value of microRNAs for detecting colorectal cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013;14(8):4699–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8(1):e53141. doi: 10.1371/journal.pone.0053141.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–24. doi: 10.1074/jbc.M701805200.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–81. doi: 10.1093/nar/gkp002.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle. 2009;8(17):2685.PubMedCrossRefGoogle Scholar
  16. 16.
    Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497–508. doi: 10.1677/erc.1.01209.PubMedCrossRefGoogle Scholar
  17. 17.
    Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res. 2010;16(3):867–75. doi: 10.1158/1078-0432.ccr-09-1840.PubMedCrossRefGoogle Scholar
  18. 18.
    Felicetti F, Errico MC, Segnalini P, Mattia G, Care A. MicroRNA-221 and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther. 2008;8(11):1759–65. doi: 10.1586/14737140.8.11.1759.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee C, He H, Jiang Y, Di Y, Yang F, Li J, et al. Elevated expression of tumor miR-222 in pancreatic cancer is associated with Ki67 and poor prognosis. Med Oncol. 2013;30(4):700. doi: 10.1007/s12032-013-0700-y.PubMedCrossRefGoogle Scholar
  20. 20.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367. doi: 10.1186/1471-2407-10-367.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, et al. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012;586(6):722–8. doi: 10.1016/j.febslet.2012.01.025.PubMedCrossRefGoogle Scholar
  22. 22.
    Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126(5):1166–76. doi: 10.1002/ijc.24827.PubMedGoogle Scholar
  23. 23.
    Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One. 2011;6(12):e28486. doi: 10.1371/journal.pone.0028486.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta. 2012;413(13–14):1058–65. doi: 10.1016/j.cca.2012.02.016.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F, et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(6):2084–92. doi: 10.1210/jc.2011-3059.PubMedCrossRefGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.PubMedCrossRefGoogle Scholar
  27. 27.
    Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008;50(3):419–30. doi: 10.1002/bimj.200710415.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81. doi: 10.1136/gut.2008.167817.PubMedCrossRefGoogle Scholar
  29. 29.
    Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, et al. MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol. 2013;108(2):89–92. doi: 10.1002/jso.23358.PubMedCrossRefGoogle Scholar
  30. 30.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. doi: 10.1038/nature03702.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86. doi: 10.1074/jbc.M806041200.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107(5):505–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhengchuan Fu
    • 1
    Email author
  • Fang Qian
    • 1
  • Xuhuan Yang
    • 1
  • Hailiang Jiang
    • 1
  • Yu Chen
    • 1
  • Sihai Liu
    • 1
  1. 1.Department of OncologyZaozhuang Mining Group Central HospitalZaozhuangChina

Personalised recommendations