Medical Oncology

, 31:164 | Cite as

Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer

  • Zhengchuan Fu
  • Fang Qian
  • Xuhuan Yang
  • Hailiang Jiang
  • Yu Chen
  • Sihai Liu
Original Paper

Abstract

Previous studies have revealed the significance of circulating microRNAs as biomarkers for cancers. The aim of this study was to detect the levels of circulating microRNA-222 (miR-222) in plasma of gastric cancer (GC) patients and evaluate its diagnostic and prognostic value. Levels of circulating miR-222 were detected by using qRT-PCR in plasma of 114 GC patients, 36 chronic atrophic gastritis (CAG) patients and 56 healthy controls. The result showed that the expression of circulating miR-222 in plasma was significantly upregulated in GC compared with CAG and healthy controls (all at P < 0.001). And its high level was significantly correlated with clinical stages (P < 0.001) and lymph nodes metastasis (P = 0.009). The receiver operating characteristics (ROC) curve analyses revealed that miR-222 had considerable diagnostic accuracy, yielded an AUC (the areas under the ROC curve) of 0.850 with 66.1 % sensitivity and 88.3 % specificity in discriminating GC from healthy controls. Moreover, Kaplan–Meier analysis demonstrated a correlation between increased circulating miR-222 level and reduced disease-free survival (P = 0.016) and overall survival (P = 0.012). In multivariate analysis stratified for known prognostic variables, circulating miR-222 was identified as an independent prognostic marker. In conclusion, our findings suggested that circulating miR-222 in plasma might be a potential and useful noninvasive biomarker for the early detection and prognosis of GC.

Keywords

Gastric cancer Circulating miR-222 Detection Prognosis 

References

  1. 1.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin. 2004;54(1):8–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang J, Yu JC, Kang WM, Ma ZQ. Treatment strategy for early gastric cancer. Surg Oncol. 2012;21(2):119–23. doi:10.1016/j.suronc.2010.12.004.PubMedCrossRefGoogle Scholar
  3. 3.
    Carpelan-Holmstrom M, Louhimo J, Stenman UH, Alfthan H, Haglund C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 2002;22(4):2311–6.PubMedGoogle Scholar
  4. 4.
    Schneider J, Schulze G. Comparison of tumor M2-pyruvate kinase (tumor M2-PK), carcinoembryonic antigen (CEA), carbohydrate antigens CA 19-9 and CA 72-4 in the diagnosis of gastrointestinal cancer. Anticancer Res. 2003;23(6D):5089–93.PubMedGoogle Scholar
  5. 5.
    Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215–39. doi:10.1146/annurev.genom.8.080706.092351.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi:10.1016/j.ydbio.2006.08.028.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. doi:10.1038/cr.2008.282.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8. doi:10.1073/pnas.0804549105.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wan C, Shen Y, Yang T, Wang T, Chen L, Wen F. Diagnostic value of microRNA for pancreatic cancer: a meta-analysis. Arch Med Sci. 2012;8(5):749–55. doi:10.5114/aoms.2012.31609.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kishimoto T, Eguchi H, Nagano H, Kobayashi S, Akita H, Hama N, et al. Plasma miR-21 is a novel diagnostic biomarker for biliary tract cancer. Cancer Sci. 2013;104(12):1626–31. doi:10.1111/cas.12300.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou XJ, Dong ZG, Yang YM, Du LT, Zhang X, Wang CX. Limited diagnostic value of microRNAs for detecting colorectal cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013;14(8):4699–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8(1):e53141. doi:10.1371/journal.pone.0053141.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–24. doi:10.1074/jbc.M701805200.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–81. doi:10.1093/nar/gkp002.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle. 2009;8(17):2685.PubMedCrossRefGoogle Scholar
  16. 16.
    Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497–508. doi:10.1677/erc.1.01209.PubMedCrossRefGoogle Scholar
  17. 17.
    Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res. 2010;16(3):867–75. doi:10.1158/1078-0432.ccr-09-1840.PubMedCrossRefGoogle Scholar
  18. 18.
    Felicetti F, Errico MC, Segnalini P, Mattia G, Care A. MicroRNA-221 and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther. 2008;8(11):1759–65. doi:10.1586/14737140.8.11.1759.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee C, He H, Jiang Y, Di Y, Yang F, Li J, et al. Elevated expression of tumor miR-222 in pancreatic cancer is associated with Ki67 and poor prognosis. Med Oncol. 2013;30(4):700. doi:10.1007/s12032-013-0700-y.PubMedCrossRefGoogle Scholar
  20. 20.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367. doi:10.1186/1471-2407-10-367.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, et al. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012;586(6):722–8. doi:10.1016/j.febslet.2012.01.025.PubMedCrossRefGoogle Scholar
  22. 22.
    Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126(5):1166–76. doi:10.1002/ijc.24827.PubMedGoogle Scholar
  23. 23.
    Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One. 2011;6(12):e28486. doi:10.1371/journal.pone.0028486.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta. 2012;413(13–14):1058–65. doi:10.1016/j.cca.2012.02.016.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F, et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(6):2084–92. doi:10.1210/jc.2011-3059.PubMedCrossRefGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.PubMedCrossRefGoogle Scholar
  27. 27.
    Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008;50(3):419–30. doi:10.1002/bimj.200710415.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81. doi:10.1136/gut.2008.167817.PubMedCrossRefGoogle Scholar
  29. 29.
    Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, et al. MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol. 2013;108(2):89–92. doi:10.1002/jso.23358.PubMedCrossRefGoogle Scholar
  30. 30.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. doi:10.1038/nature03702.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86. doi:10.1074/jbc.M806041200.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107(5):505–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhengchuan Fu
    • 1
  • Fang Qian
    • 1
  • Xuhuan Yang
    • 1
  • Hailiang Jiang
    • 1
  • Yu Chen
    • 1
  • Sihai Liu
    • 1
  1. 1.Department of OncologyZaozhuang Mining Group Central HospitalZaozhuangChina

Personalised recommendations