Medical Oncology

, 30:743

Peripheral CD45RO, PD-1, and TLR4 expression in metastatic colorectal cancer patients treated with bevacizumab, fluorouracil, and irinotecan (FOLFIRI-B)

  • Vincenzo Formica
  • Vittore Cereda
  • Maria-Giovana di Bari
  • Italia Grenga
  • Manfredi Tesauro
  • Palmirotta Raffaele
  • Patrizia Ferroni
  • Fiorella Guadagni
  • Mario Roselli
Original Paper


CD45RO, PD-1, and TLR4 immune pathways have proven pivotal in regulating antitumor response and correlate with survival for localized colorectal cancer (CRC). We evaluated if their peripheral expression was associated with outcome in metastatic CRC (mCRC). Thirty-one mCRC patients were eligible for this prospective study ( NCT01533740) and treated with first-line FOLFIRI-B. Blood was drawn before the first and third cycle and analyzed by flow cytometry for frequency (%) of CD4+, CD8+, CD45RO+, and PD1+ mononuclear cells and for TLR4 expression on neutrophils. Two cycles of chemotherapy determined changes in immune variables that were prognostically meaningful. Pre-third-cycle (ptc) CD45RO+CD8+cell% displayed a statistically significant association with progression-free survival (PFS) (median PFS 22.4 vs. 9.4 months for patients with CD45RO+CD8+cell%> vs. <the median value of 12 %, respectively, p 0.02) and overall survival (OS) (2-year OS rate 62 vs. 44 %, respectively, p 0.04). Surprisingly, ptc-PD1 overexpression was also associated with improved PFS of borderline statistical significance (HR 0.42, p 0.06). A Cox regression multivariate analysis for PFS including ptc-CD45RO+CD8+cell%, ptc-PD1+cell%, CEA, LDH, and Köhne risk class demonstrated CD45RO+CD8+cell% to be the only independent prognostic factor (HR 0.23, p 0.04). TLR4 and CD4 were not associated with the outcome. Peripheral CD8+CD45RO+ cells were confirmed to be of independent prognostic value in mCRC patients. Overexpression of the PD-1 immunosuppressor after two cycles of therapy may be a negative feedback mechanism, and therefore, an indirect sign of chemotherapy induced antitumor immune response with a favorable association with outcome. Enhancement of CD8+CD45RO+ cell response may be a fascinating therapeutic target to improve the efficacy of FOLFIRI-B.


CD45RO PD-1 TLR4 Colorectal cancer 


  1. 1.
    Ferlay J, Autier P, Boniol M. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007;18:581–92.CrossRefPubMedGoogle Scholar
  2. 2.
    American Cancer Society Cancer facts and figures, 2006. American Cancer Society; Atlanta: 2006. (Accessed April 26, 2011).
  3. 3.
    Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J Clin Oncol. 2007;25:4779–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Grothey A, Sugrue MM, Purdie DM, et al. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol. 2008;26:5326–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Grothey A, Sargent D. Overall survival of patients with advanced colorectal cancer correlates with availability of fluorouracil, irinotecan, and oxaliplatin regardless of whether doublet or single-agent therapy is used first line. J Clin Oncol. 2005;23:9441–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Grothey A, Sargent D, Goldberg RM, et al. Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol. 2004;22:1209–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel DM, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011;71:5670–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Guadagni F, Ferroni P, Palmirotta R, Portarena I, Formica V, Roselli M. Review. TNF/VEGF cross-talk in chronic inflammation-related cancer initiation and progression: an early target in anticancer therapeutic strategy. In Vivo. 2007;21:147–61.PubMedGoogle Scholar
  9. 9.
    Young JL, Ramage JM, Gaston JS, Beverley PC. In vitro responses of human CD45R0brightRA- and CD45R0-RAbright T cell subsets and their relationship to memory and naive T cells. Eur J Immunol. 1997;27:2383–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.CrossRefPubMedGoogle Scholar
  11. 11.
    Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pagès F, Galon J. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29:610–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMedGoogle Scholar
  13. 13.
    Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63:6501–5.PubMedGoogle Scholar
  15. 15.
    Blank C, Brown I, Peterson AC, et al. PD-L1/B7-H1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8 + T cells. Cancer Res. 2003;64:1140–5.CrossRefGoogle Scholar
  16. 16.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.CrossRefPubMedGoogle Scholar
  18. 18.
    Jung ID, Jeong SK, Lee CM, Noh KT, Heo DR, Shin YK, Yun CH, Koh WJ, Akira S, Whang J, Kim HJ, Park WS, Shin SJ, Park YM. Enhanced efficacy of therapeutic cancer vaccines produced by co-treatment with Mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist. Cancer Res. 2011;71:2858–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim JY, Kim YJ, Kim JS, Ryu HS, Lee HK, Kang JS, Kim HM, Hong JT, Kim Y, Han SB. Adjuvant effect of a natural TLR4 ligand on dendritic cell-based cancer immunotherapy. Cancer Lett. 2011;313:226–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Ahmed A, Wang JH, Redmond HP. Silencing of TLR4 increases tumor progression and lung metastasis in a murine model of breast cancer. Ann Surg Oncol. 2012 Aug 14 (epub ahead of print).Google Scholar
  21. 21.
    Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002;347:185–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Hartman ZC, Osada T, Glass O, Yang XY, Lei GJ, Lyerly HK, Clay TM. Ligand-independent toll-like receptor signals generated by ectopic overexpression of MyD88 generate local and systemic antitumor immunity. Cancer Res. 2010;70:7209–20.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Köhne CH, Cunningham D, Di CF, Glimelius B, Blijham G, Aranda E, et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3,825 patients. Ann Oncol. 2002;13:308–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Formica V, Massara MC, Portarena I, Fiaschetti V, Grenga I, Del Vecchio Blanco G, Sileri P, Tosetto L, Skoulidis F, Pallone F, Roselli M. Role of CA19.9 in predicting bevacizumab efficacy for metastatic colorectal cancer patients. Cancer Biomark. 2009;5:167–75.PubMedGoogle Scholar
  27. 27.
    Ferroni P, Palmirotta R, Spila A, Martini F, Formica V, Portarena I, Del Monte G, Buonomo O, Roselli M, Guadagni F. Prognostic value of carcinoembryonic antigen and vascular endothelial growth factor tumor tissue content in colorectal cancer. Oncology. 2006;71:176–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Aquino A, Prete SP, Balduzzi A, Fossile E, Formica V, Torino F, Bonmassar L, Di Giacomo A, Cappelletti D, Cardillo A, Graziani G. A novel method for monitoring response to chemotherapy based on the detection of circulating cancer cells: a case report. J Chemother. 2002;14:412–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Formica V, Palmirotta R, Del Monte G, Savonarola A, Ludovici G, De Marchis ML, Grenga I, Schirru M, Guadagni F, Roselli M. Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab. Int J Colorectal Dis. 2011;26:143–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27:5944–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vincenzo Formica
    • 1
    • 4
  • Vittore Cereda
    • 1
  • Maria-Giovana di Bari
    • 2
  • Italia Grenga
    • 1
  • Manfredi Tesauro
    • 3
  • Palmirotta Raffaele
    • 2
  • Patrizia Ferroni
    • 2
  • Fiorella Guadagni
    • 2
  • Mario Roselli
    • 1
  1. 1.Medical Oncology Unit, ‘Tor Vergata’ Clinical CenterUniversity of RomeRomeItaly
  2. 2.Department of Advanced Biotechnologies and BioimagingIRCCS San Raffaele PisanaRomeItaly
  3. 3.Internal Medicine Department, ‘Tor Vergata’ Clinical CenterUniversity of RomeRomeItaly
  4. 4.Medical Oncology Unit, Department of Internal Medicine‘Tor Vergata’ University HospitalRomeItaly

Personalised recommendations