Advertisement

Medical Oncology

, 30:667 | Cite as

Effect of leuprolide acetate on ovarian function after cyclophosphamide–doxorubicin-based chemotherapy in premenopausal patients with breast cancer: results from a phase II randomized trial

  • Guiping SongEmail author
  • Hui Gao
  • Zhixiang Yuan
Original Paper

Abstract

Previous studies provided inconclusive evidence for the effectiveness of gonadotropin-releasing hormone analogue on ovarian function protection against chemotherapy-induced genotoxicity in premenopausal patients. This study was designed to examine the efficacy of leuprolide acetate on ovarian function preservation in patients with breast cancer. A total of 220 patients were recruited in this prospective clinical trial and were assigned randomly to receive cyclophosphamide–doxorubicin-based chemotherapy only or chemotherapy plus leuprolide acetate. Resumption of menses or premenopausal levels of both follicle-stimulating hormone (FSH) and estradiol (E 2) within 12 months after the end of chemotherapy were considered as effective ovarian preservation. A total of 183 patients were considered evaluable (94 in chemotherapy-only group and 89 in chemotherapy plus leuprolide acetate group). At the end of follow-up, 27 patients in chemotherapy group and 15 in chemotherapy plus leuprolide acetate group resumed menses; seven patients in chemotherapy group and 14 in chemotherapy plus leuprolide acetate group restored premenopausal levels of FSH and E 2. The median time to resume menses was 9.2 months for patients in chemotherapy plus leuprolide acetate group and was not reached in chemotherapy-only group. In addition, our results demonstrated that age and chemotherapy doses made no significant difference in the occurrence of premature menopause. The leuprolide acetate treatment simultaneously with cyclophosphamide–doxorubicin-based chemotherapy reduced the risk of developing premature menopause in premenopausal patients with breast cancer.

Keywords

Leuprolide acetate Ovarian function Chemotherapy 

Notes

Conflict of interest

None.

References

  1. 1.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53(1):5–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Bokser L, Szende B, Schally AV. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats. Br J Cancer. 1990;61(6):861–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol. 2008;26(20):3324–30. doi: 10.1200/JCO.2007.14.2471.PubMedCrossRefGoogle Scholar
  4. 4.
    Kreuser ED, Hetzel WD, Billia DO, Thiel E. Gonadal toxicity following cancer therapy in adults: significance, diagnosis, prevention and treatment. Cancer Treat Rev. 1990;17(2–3):169–75. doi: 0305-7372(90)90043-F.PubMedCrossRefGoogle Scholar
  5. 5.
    Petrek JA, Naughton MJ, Case LD, Paskett ED, Naftalis EZ, Singletary SE, et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol. 2006;24(7):1045–51. doi: 10.1200/JCO.2005.03.3969.PubMedCrossRefGoogle Scholar
  6. 6.
    Bines J, Oleske DM, Cobleigh MA. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol. 1996;14(5):1718–29.PubMedGoogle Scholar
  7. 7.
    Del Mastro L, Venturini M, Sertoli M. Phase III adjuvant trial comparing standard versus accelerated FEC regimen in early breast cancer patients. Results from GONO-MIG1 study. Breast Cancer Res Treat. 2003;82(Suppl 1):S9 (Abstr).Google Scholar
  8. 8.
    Levine MN, Bramwell VH, Pritchard KI, Norris BD, Shepherd LE, Abu-Zahra H, et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1998;16(8):2651–8.PubMedGoogle Scholar
  9. 9.
    Del Mastro L, Venturini M, Sertoli MR, Rosso R. Amenorrhea induced by adjuvant chemotherapy in early breast cancer patients: prognostic role and clinical implications. Breast Cancer Res Treat. 1997;43(2):183–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Schover LR. Premature ovarian failure and its consequences: vasomotor symptoms, sexuality, and fertility. J Clin Oncol. 2008;26(5):753–8. doi: 10.1200/JCO.2007.14.1655.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24(18):2917–31. doi: 10.1200/JCO.2006.06.5888.PubMedCrossRefGoogle Scholar
  12. 12.
    Lamar CA, DeCherney AH. Fertility preservation: state of the science and future research directions. Fertil Steril. 2009;91(2):316–9. doi: 10.1016/j.fertnstert.2008.08.133.PubMedCrossRefGoogle Scholar
  13. 13.
    Porcu E, Venturoli S, Damiano G, Ciotti PM, Notarangelo L, Paradisi R, et al. Healthy twins delivered after oocyte cryopreservation and bilateral ovariectomy for ovarian cancer. Reprod Biomed Online. 2008;17(2):265–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Meirow D. Fertility preservation in cancer patients using stored ovarian tissue: clinical aspects. Curr Opin Endocrinol Diabetes Obes. 2008;15(6):536–47. doi: 10.1097/MED.0b013e32831a44a8.PubMedCrossRefGoogle Scholar
  15. 15.
    Ataya K, Rao LV, Lawrence E, Kimmel R. Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod. 1995;52(2):365–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Del Mastro L, Catzeddu T, Boni L, Bell C, Sertoli MR, Bighin C, et al. Prevention of chemotherapy-induced menopause by temporary ovarian suppression with goserelin in young, early breast cancer patients. Ann Oncol. 2006;17(1):74–8. doi: 10.1093/annonc/mdj029.PubMedCrossRefGoogle Scholar
  17. 17.
    Urruticoechea A, Arnedos M, Walsh G, Dowsett M, Smith IE. Ovarian protection with goserelin during adjuvant chemotherapy for pre-menopausal women with early breast cancer (EBC). Breast Cancer Res Treat. 2008;110(3):411–6. doi: 10.1007/s10549-007-9745-y.PubMedCrossRefGoogle Scholar
  18. 18.
    Recchia F, Saggio G, Amiconi G, Di Blasio A, Cesta A, Candeloro G, et al. Gonadotropin-releasing hormone analogues added to adjuvant chemotherapy protect ovarian function and improve clinical outcomes in young women with early breast carcinoma. Cancer. 2006;106(3):514–23. doi: 10.1002/cncr.21646.PubMedCrossRefGoogle Scholar
  19. 19.
    Oktay K, Sonmezer M, Oktem O, Fox K, Emons G, Bang H. Absence of conclusive evidence for the safety and efficacy of gonadotropin-releasing hormone analogue treatment in protecting against chemotherapy-induced gonadal injury. Oncologist. 2007;12(9):1055–66. doi: 10.1634/theoncologist.12-9-1055.PubMedCrossRefGoogle Scholar
  20. 20.
    Ben-Aharon I, Gafter-Gvili A, Leibovici L, Stemmer SM. Pharmacological interventions for fertility preservation during chemotherapy: a systematic review and meta-analysis. Breast Cancer Res Treat. 2010;122(3):803–11. doi: 10.1007/s10549-010-0996-7.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang J, Gao W, Wang P, Wu Z. Relationships among hope, coping style and social support for breast cancer patients. Chin Med J (Engl). 2010;123:2331–5.Google Scholar
  22. 22.
    Badawy A, Elnashar A, El-Ashry M, Shahat M. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril. 2009;91(3):694–7. doi: 10.1016/j.fertnstert.2007.12.044.PubMedCrossRefGoogle Scholar
  23. 23.
    Gerber B, von Minckwitz G, Stehle H, Reimer T, Felberbaum R, Maass N, et al. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol. 2011;29(17):2334–41. doi: 10.1200/JCO.2010.32.5704.PubMedCrossRefGoogle Scholar
  24. 24.
    Brookmeyer R, Crowley J. Confidence interval for the median survival time. Biometrics. 1982;38:29–41.CrossRefGoogle Scholar
  25. 25.
    Chapman RM, Sutcliffe SB, Malpas JS. Cytotoxic-induced ovarian failure in women with Hodgkin’s disease I. Hormone function. JAMA. 1979;242(17):1877–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodwin PJ, Ennis M, Pritchard KI, Trudeau M, Hood N. Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol. 1999;17(8):2365–70.PubMedGoogle Scholar
  27. 27.
    Blumenfeld Z, Avivi I, Linn S, Epelbaum R, Ben-Shahar M, Haim N. Prevention of irreversible chemotherapy-induced ovarian damage in young women with lymphoma by a gonadotrophin-releasing hormone agonist in parallel to chemotherapy. Hum Reprod. 1996;11(8):1620–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Santoro A, Bonadonna G, Valagussa P, Zucali R, Viviani S, Villani F, et al. Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin’s disease: superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J Clin Oncol. 1987;5(1):27–37.PubMedGoogle Scholar
  29. 29.
    Bokemeyer C, Schmoll HJ, van Rhee J, Kuczyk M, Schuppert F, Poliwoda H. Long-term gonadal toxicity after therapy for Hodgkin’s and non-Hodgkin’s lymphoma. Ann Hematol. 1994;68(3):105–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Park HJ, Koo YA, Im YH, Yoon BK, Choi D. GnRH agonist therapy to protect ovarian function in young Korean breast cancer patients. J Korean Med Sci. 2010;25(1):110–6. doi: 10.3346/jkms.2010.25.1.110.PubMedCrossRefGoogle Scholar
  31. 31.
    Blumenfeld Z, Avivi I, Ritter M, Rowe JM. Preservation of fertility and ovarian function and minimizing chemotherapy-induced gonadotoxicity in young women. J Soc Gynecol Investig. 1999;6(5):229–39.PubMedCrossRefGoogle Scholar
  32. 32.
    Blumenfeld Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist co-treatment in addition to cryopreservation of embrya, oocytes, or ovaries. Oncologist. 2007;12(9):1044–54. doi: 10.1634/theoncologist.12-9-1044.PubMedCrossRefGoogle Scholar
  33. 33.
    Imai A, Sugiyama M, Furui T, Tamaya T, Ohno T. Direct protection by a gonadotropin-releasing hormone analog from doxorubicin-induced granulosa cell damage. Gynecol Obstet Invest. 2007;63(2):102–6. doi: 10.1159/000096062.PubMedCrossRefGoogle Scholar
  34. 34.
    Ismail-Khan R, Minton S, Cox C, Sims I, Laceivic M, Gross-king M, et al. Preservation of ovarian function in young women treated with neoadjuvant chemotherapy for breast cancer: a randomized trial using the GnRH agonist (triptorelin) during chemotherapy [abstract]. J Clin Oncol. 2008;26(155):524.Google Scholar
  35. 35.
    Del Mastro L, Boni L, Michelotti A, Gamucci T, Olmeo N, Gori S, et al. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA. 2011;306(3):269–76. doi: 10.1001/jama.2011.991.PubMedCrossRefGoogle Scholar
  36. 36.
    Ozcelik B, Turkyilmaz C, Ozgun MT, Serin IS, Batukan C, Ozdamar S, et al. Prevention of paclitaxel and cisplatin induced ovarian damage in rats by a gonadotropin-releasing hormone agonist. Fertil Steril. 2010;93(5):1609–14. doi: 10.1016/j.fertnstert.2009.02.054.PubMedCrossRefGoogle Scholar
  37. 37.
    Gucer F, Balkanli-Kaplan P, Doganay L, Yuce MA, Demiralay E, Sayin NC, et al. Effect of paclitaxel on primordial follicular reserve in mice. Fertil Steril. 2001;76(3):628–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Yucebilgin MS, Terek MC, Ozsaran A, Akercan F, Zekioglu O, Isik E, et al. Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust N Z J Obstet Gynaecol. 2004;44(1):6–9. doi: 10.1111/j.1479-828X.2004.00143.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Mailhes JB, Carabatsos MJ, Young D, London SN, Bell M, Albertini DF. Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Mutat Res. 1999;423(1–2):79–90.PubMedGoogle Scholar
  40. 40.
    Matsuo G, Ushijima K, Shinagawa A, Takahashi S, Fujiyoshi N, Takemoto S, et al. GnRH agonist acts as ovarian protection in chemotherapy induced gonadotoxicity: an experiment using a rat model. Kurume Med J. 2007;54(1–2):25–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Klijn JG, Beex LV, Mauriac L, van Zijl JA, Veyret C, Wildiers J, et al. Combined treatment with buserelin and tamoxifen in premenopausal metastatic breast cancer: a randomized study. J Natl Cancer Inst. 2000;92(11):903–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Arriagada R, Le MG, Spielmann M, Mauriac L, Bonneterre J, Namer M, et al. Randomized trial of adjuvant ovarian suppression in 926 premenopausal patients with early breast cancer treated with adjuvant chemotherapy. Ann Oncol. 2005;16(3):389–96. doi: 10.1093/annonc/mdi085.PubMedCrossRefGoogle Scholar
  43. 43.
    Rivkin SE, Green S, O’Sullivan J, Cruz AB, Abeloff MD, Jewell WR, et al. Adjuvant CMFVP versus adjuvant CMFVP plus ovariectomy for premenopausal, node-positive, and estrogen receptor-positive breast cancer patients: a Southwest Oncology Group study. J Clin Oncol. 1996;14(1):46–51.PubMedGoogle Scholar
  44. 44.
    Gerber B, Dieterich M, Muller H, Reimer T. Controversies in preservation of ovary function and fertility in patients with breast cancer. Breast Cancer Res Treat. 2008;108(1):1–7. doi: 10.1007/s10549-007-9572-1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PharmacyJiangyin Hospital Affiliated to Nanjing University of Traditional Chinese MedicineJiangyinChina
  2. 2.Medical College, Qingdao UniversityQingdaoChina
  3. 3.Sichuan Academy of Chinese Medicine SciencesChengduChina

Personalised recommendations