Medical Oncology

, 30:572 | Cite as

Gene expression profiling identifies EPHB4 as a potential predictive biomarker in colorectal cancer patients treated with bevacizumab

  • Irene Guijarro-Muñoz
  • Antonio Sánchez
  • Esther Martínez-Martínez
  • Jose M. García
  • Clara Salas
  • Mariano Provencio
  • Luis Álvarez-Vallina
  • Laura Sanz
Original Paper

Abstract

The anti-VEGF monoclonal antibody bevacizumab was approved in 2004 as a first-line treatment for metastatic colorectal cancer (CRC) in combination with chemotherapy and provided proof of principle for antiangiogenic therapy. However, there is no biomarker that can help to select patients who may benefit from bevacizumab in order to improve cost-effectiveness and therapeutic outcomes. The aim of this study was to compare gene expression profiles in CRC patients treated with bevacizumab who responded to the treatment with those that did not respond, in an effort to identify potential predictive biomarkers. RNA isolated from formalin-fixed paraffin-embedded tumor specimens of patients treated with bevacizumab was subjected to gene expression analysis with quantitative RT-PCR arrays profiling 84 genes implicated in the angiogenic process. Data were validated at the protein level using immunohistochemistry. We identified a gene, EPHB4, whose expression was significantly increased in nonresponders (p = 0.048, Mann–Whitney test). Furthermore, high EPHB4 tumor levels were associated with decreased median overall survival (16 months vs 48, Log-rank p = 0.012). This was not observed in a control group of CRC patients treated only with chemotherapy, suggesting that EPHB4 constitutes a potential predictive biomarker and not a mere prognostic one. These data support the notion of a potential synergy between EPHB4-EFNB2 and VEGF-VEGFR pathways, making patients with high EPHB4 expression more resistant to VEGF blocking. Therefore, determination of EPHB4 levels in CRC samples could be useful for the prediction of response to bevacizumab.

Keywords

EPHB4 Bevacizumab Biomarker VEGF Colorectal cancer 

Supplementary material

12032_2013_572_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)

References

  1. 1.
    Schmidt C. Costly cancer drugs trigger proposals to modify clinical trial design. J Natl Cancer Inst. 2009;101:1662–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Alymani NA, Smith MD, Williams DJ, Petty RD. Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur J Cancer. 2010;46:869–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.PubMedCrossRefGoogle Scholar
  5. 5.
    Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 2010;11:1172–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Gray RG, Quirke P, Handley K, Lopatin M, Magill L, Baehner FL, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol. 2011;29:4611–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy RD, Bylesjo M, Kerr P, Davison T, Black JM, Kay EW, et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol. 2011;29:4620–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Chun YS, Vauthey JN, Boonsirikamchai P, Maru DM, Kopetz S, Palavecino M, et al. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA. 2009;302:2338–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Sanz L, Cuesta AM, Salas C, Corbacho C, Bellas C, Álvarez-Vallina L. Differential transplantability of human endothelial cells in colorectal cancer and renal cell carcinoma primary xenografts. Lab Invest. 2009;89:91–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Davalos V, Dopeso H, Castano J, Wilson AJ, Vilardell F, Romero-Gimenez J, et al. EPHB4 and survival of colorectal cancer patients. Cancer Res. 2006;66:8943–8.PubMedCrossRefGoogle Scholar
  12. 12.
    von Ahlfen S, Missel A, Bendrat K, Schlumpberger M. Determinants of RNA quality from FFPE samples. PLoS ONE. 2007;2:e1261.CrossRefGoogle Scholar
  13. 13.
    Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA. 2004;101:5583–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465:483–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kertesz N, Krasnoperov V, Reddy R, Leshanski L, Kumar SR, Zozulya S, et al. The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood. 2006;107:2330–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Djokovic D, Trindade A, Gigante J, Badenes M, Silva L, Liu R, et al. Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogenesis. BMC Cancer. 2010;10:641.PubMedCrossRefGoogle Scholar
  17. 17.
    Krasnoperov V, Kumar SR, Ley E, Li X, Scehnet J, Liu R, et al. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol. 2010;176:2029–38.PubMedCrossRefGoogle Scholar
  18. 18.
    Martiny-Baron G, Holzer P, Billy E, Schnell C, Brueggen J, Ferretti M, et al. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis. 2010;13:259–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Noberini R, Mitra S, Salvucci O, Valencia F, Duggineni S, Prigozhina N, et al. PEGylation potentiates the effectiveness of an antagonistic peptide that targets the EphB4 receptor with nanomolar affinity. PLoS ONE. 2011;6:e28611.PubMedCrossRefGoogle Scholar
  20. 20.
    Abengozar MA, de Frutos S, Ferreiro S, Soriano J, Perez-Martinez M, Olmeda D. Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood. 2012;119:4565–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71:6073–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Stephenson SA, Slomka S, Douglas EL, Hewett PJ, Hardingham JE. Receptor protein tyrosine kinase EphB4 is up-regulated in colon cancer. BMC Mol Biol. 2001;2:15.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu W, Ahmad SA, Jung YD, Reinmuth N, Fan F, Bucana CD, et al. Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer. 2002;94:934–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R, et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res. 2009;69:3736–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar SR, Masood R, Spannuth WA, Singh J, Scehnet J, Kleiber G, et al. The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. Br J Cancer. 2007;96:1083–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Noren NK, Pasquale EB. Paradoxes of the EphB4 receptor in cancer. Cancer Res. 2007;67:3994–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Munarini N, Jager R, Abderhalden S, Zuercher G, Rohrbach V, Loercher S, et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci. 2002;115:25–37.PubMedGoogle Scholar
  28. 28.
    Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol. 2006;8:815–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Dopeso H, Mateo-Lozano S, Mazzolini R, Rodrigues P, Lagares-Tena L, Ceron J, et al. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer Res. 2009;69:7430–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Batlle E, Bacani J, Begthel H, Jonkheer S, Jonkeer S, Gregorieff A, et al. EphB receptor activity suppresses colorectal cancer progression. Nature. 2005;435:1126–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Xiao Z, Carrasco R, Kinneer K, Sabol D, Jallal B, Coats S, et al. EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: implications for EphB4 as a cancer target. Cancer Biol Ther. 2012;13:630–7.PubMedGoogle Scholar
  32. 32.
    Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA. Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer. 2012;131:614–24.CrossRefGoogle Scholar
  33. 33.
    Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10:165–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res. 2006;66:3370–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 2006;24:217–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, et al. Gene expression in colorectal cancer. Cancer Res. 2002;62:4352–63.PubMedGoogle Scholar
  37. 37.
    Wiese AH, Auer J, Lassmann S, Nahrig J, Rosenberg R, Hofler H, et al. Identification of gene signatures for invasive colorectal tumor cells. Cancer Detect Prev. 2007;31:282–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu AY, Roudier MP, True LD. Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am J Pathol. 2004;165:1543–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE. 2011;6:e24426.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Irene Guijarro-Muñoz
    • 1
  • Antonio Sánchez
    • 2
  • Esther Martínez-Martínez
    • 2
  • Jose M. García
    • 2
  • Clara Salas
    • 3
  • Mariano Provencio
    • 2
  • Luis Álvarez-Vallina
    • 1
  • Laura Sanz
    • 1
  1. 1.Molecular Immunology UnitHospital Universitario Puerta de Hierro MajadahondaMadridSpain
  2. 2.Department of Medical OncologyHospital Universitario Puerta de Hierro MajadahondaMadridSpain
  3. 3.Department of PathologyHospital Universitario Puerta de Hierro MajadahondaMadridSpain

Personalised recommendations