Advertisement

Medical Oncology

, 30:517 | Cite as

Deregulation of protein phosphatase expression in acute myeloid leukemia

  • Nuzhat N. Kabir
  • Lars Rönnstrand
  • Julhash U. Kazi
Short Communication

Abstract

Acute myeloid leukemia (AML) is a highly malignant disease of myeloid cell line. AML is the most frequent adult leukemia with inadequate treatment possibility. The protein phosphatases are critical regulators of cell signaling, and deregulation of protein phosphatases always contribute to cell transformation. Although many studies established a relationship between protein phosphatases and leukemia, little is known about the role of this group of proteins in AML. To address this issue, we initially identified the complete catalog of human protein phosphatase genes and used this catalog to study deregulation of protein phosphatases in AML. Using mRNA expression data of AML patients, we show that 11 protein phosphatases are deregulated in AML within 174 protein phosphatases. The GO enrichment study suggests that these genes are involved in multiple biological processes other than protein de-phosphorylation. Expression of DUSP10, PTPRC, and PTPRE was significantly higher than average expression in AML, and a linear combination of DUSP10, MTMR11, PTPN4, and PTPRE expressions provides important information about disease subtypes. Our results provide an overview of protein phosphatase deregulation in AML.

Keywords

Acute myeloid leukemia AML Protein phosphatase Protein tyrosine phosphatase Protein serine/threonine phosphatase Dual specificity protein phosphatase 

Notes

Conflict of interest

The authors declared no conflict of interest.

References

  1. 1.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.PubMedCrossRefGoogle Scholar
  2. 2.
    Kabir NN, Kazi JU. Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity. Genet Mol Biol. 2011;34(4):587–91. doi: 10.1590/S1415-47572011005000035.PubMedCrossRefGoogle Scholar
  3. 3.
    Kazi JU, Kabir NN, Soh JW. Bioinformatic prediction and analysis of eukaryotic protein kinases in the rat genome. Gene. 2008;410(1):147–53. doi: 10.1016/j.gene.2007.12.003.PubMedCrossRefGoogle Scholar
  4. 4.
    Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA. 2004;101(32):11707–12. doi: 10.1073/pnas.0306880101.PubMedCrossRefGoogle Scholar
  5. 5.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34. doi: 10.1126/science.1075762.PubMedCrossRefGoogle Scholar
  6. 6.
    Porcu M, Kleppe M, Gianfelici V, Geerdens E, De Keersmaecker K, Tartaglia M, et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood. 2012;119(19):4476–9. doi: 10.1182/blood-2011-09-379958.PubMedCrossRefGoogle Scholar
  7. 7.
    Godfrey R, Arora D, Bauer R, Stopp S, Muller JP, Heinrich T, et al. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/PTPRJ. Blood. 2012;119(19):4499–511. doi: 10.1182/blood-2011-02-336446.PubMedCrossRefGoogle Scholar
  8. 8.
    Arora D, Kothe S, van den Eijnden M, Hooft van Huijsduijnen R, Heidel F, Fischer T, et al. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun Signal CCS. 2012;10(1):19. doi: 10.1186/1478-811X-10-19.CrossRefGoogle Scholar
  9. 9.
    Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Ronnstrand L. Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem. 2012;287(43):36509–17. doi: 10.1074/jbc.M112.376111.PubMedCrossRefGoogle Scholar
  10. 10.
    Kazi JU, Ronnstrand L. FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol. 2012;. doi: 10.1016/j.molonc.2012.11.003.PubMedGoogle Scholar
  11. 11.
    Kazi JU, Ronnstrand L. Src-Like Adaptor Protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling. PLoS ONE. 2012;7(12):e53509. doi: 10.1371/journal.pone.0053509.PubMedCrossRefGoogle Scholar
  12. 12.
    Kabir NN, Ronnstrand L, Kazi JU. Protein Kinase C (PKC) expression is deregulated in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;. doi: 10.3109/10428194.2013.769220.PubMedGoogle Scholar
  13. 13.
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711.PubMedCrossRefGoogle Scholar
  14. 14.
    Forrest AR, Ravasi T, Taylor D, Huber T, Hume DA, Grimmond S. Phosphoregulators: protein kinases and protein phosphatases of mouse. Genome Res. 2003;13(B6):1443–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosom Cancer. 2008;47(1):8–20. doi: 10.1002/gcc.20500.PubMedCrossRefGoogle Scholar
  16. 16.
    Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC, et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008;112(10):4193–201. doi: 10.1182/blood-2008-02-134411.PubMedCrossRefGoogle Scholar
  17. 17.
    Yagi T, Morimoto A, Eguchi M, Hibi S, Sako M, Ishii E, et al. Identification of a gene expression signature associated with pediatric AML prognosis. Blood. 2003;102(5):1849–56. doi: 10.1182/blood-2003-02-0578.PubMedCrossRefGoogle Scholar
  18. 18.
    Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350(16):1605–16. doi: 10.1056/NEJMoa031046.PubMedCrossRefGoogle Scholar
  19. 19.
    Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M, et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2005;19(3):402–9. doi: 10.1038/sj.leu.2403625.CrossRefGoogle Scholar
  20. 20.
    Ruela-de-Sousa RR, Queiroz KC, Peppelenbosch MP, Fuhler GM. Reversible phosphorylation in haematological malignancies: potential role for protein tyrosine phosphatases in treatment? Biochim Biophys Acta. 2010;1806(2):287–303. doi: 10.1016/j.bbcan.2010.07.007.PubMedGoogle Scholar
  21. 21.
    Nomura M, Shiiba K, Katagiri C, Kasugai I, Masuda K, Sato I, et al. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas. Oncol Rep. 2012;28(3):931–6. doi: 10.3892/or.2012.1862.PubMedGoogle Scholar
  22. 22.
    Hao L, ElShamy WM. BRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHR. Int J Cancer J Int du Cancer. 2007;121(1):39–46. doi: 10.1002/ijc.22597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nuzhat N. Kabir
    • 1
  • Lars Rönnstrand
    • 2
  • Julhash U. Kazi
    • 1
    • 2
  1. 1.Laboratory of Computational BiochemistryKN Biomedical Research InstituteBarisalBangladesh
  2. 2.Experimental Clinical Chemistry, Department of Laboratory Medicine, Wallenberg Laboratory, Skåne University HospitalLund UniversityMalmöSweden

Personalised recommendations