Medical Oncology

, 30:516

Association of PYGO2 and EGFR in esophageal squamous cell carcinoma

  • Meysam Moghbeli
  • Mohammad Reza Abbaszadegan
  • Moein Farshchian
  • Mehdi Montazer
  • Reza Raeisossadati
  • Abbas Abdollahi
  • Mohammad Mahdi Forghanifard
Original Paper

Abstract

Wnt signaling is an important evolutionary conserved pathway that is not only involved in determination of cellular development, self-renewal, and fate, but also has significant roles in tumor development and progression. Deregulation of the Wnt/β-catenin signaling pathway and aberrant expression of its components is commonly observed in solid tumors. Such aberrant regulation of Wnt signaling is commonly related to either malfunction of its components or crosstalk with other cellular processes such as the epidermal growth factor receptor (EGFR) signaling cascade. Therefore, identification of the roles of major involved components may be useful to identify new therapeutic targets for cancer treatment. In this study, we assessed EGFR and PYGO2 mRNA expression in tumors and margin normal tissues from 55 esophageal squamous cell carcinoma (ESCC) patients using real-time qRT-PCR, and evaluated clinicopathology relative to the two genes’ expression levels. Significant PYGO2 and EGFR overexpression was observed in 30.9 % (P = 0.017) and 38.2 % (P = 0.006) of tumors, respectively. PYGO2 and EGFR expression were significantly associated not only with each other (P < 0.001), but also with tumor staging and depth (P < 0.001). Furthermore, PYGO2 expression was significantly correlated with the tumor grade (P = 0.043) and size (P = 0.023). We identify PYGO2 as a new molecular marker of invasive tumors, introducing its probable oncogenic role in ESCC progression and aggressiveness. In line with other reports, we also illustrate the oncogenic function of EGFR in the development of ESCC through advance stages. We also observed a significant correlation between PYGO2 and EGFR in ESCC tumors, which reveals a mutual convergent influence of these factors in tumor progression and development. Considering aberrant expression, mutual positive feedback, and the significant clinical relevance of these genes in ESCC, we introduce them as appropriate therapeutic targets in adjuvant therapy of ESCC.

Keywords

Esophageal squamous cell carcinoma PYGO2 EGFR Expressional analysis Real-time PCR 

References

  1. 1.
    Gholamin M, Moaven O, Memar B, Farshchian M, Naseh H, Malekzadeh R, et al. Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J Surg. 2009;33(7):1439–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Rice TW, Rusch VW, Apperson-Hansen C, Allen MS, Chen LQ, Hunter JG, et al. Worldwide esophageal cancer collaboration. Dis Esophagus. 2009;22(1):1–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Headrick JR, Nichols FC III, Miller DL, Allen MS, Trastek VF, Deschamps C et al. High-grade esophageal dysplasia: long-term survival and quality of life after esophagectomy. Ann Thorac Surg. 2002;73(6):1697–702; discussion 702–3.Google Scholar
  4. 4.
    Collard JM, Otte JB, Fiasse R, Laterre PF, De Kock M, Longueville J, et al. Skeletonizing en bloc esophagectomy for cancer. Ann Surg. 2001;234(1):25–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Hulscher JB, van Sandick JW, de Boer AG, Wijnhoven BP, Tijssen JG, Fockens P, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347(21):1662–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Morin PJ. beta-catenin signaling and cancer. BioEssays. 1999;21(12):1021–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Bienz M. Beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol. 2005;15(2):R64–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell. 2005;97(3):185–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Shapiro M, Akiri G, Chin C, Wisnivesky JP, Beasley MB, Weiser TS et al. Wnt pathway activation predicts increased risk of tumor recurrence in patients with stage I nonsmall cell lung cancer. Ann Surg. 2013;257(3):548–54.Google Scholar
  10. 10.
    Daa T, Kashima K, Kaku N, Suzuki M, Yokoyama S. Mutations in components of the Wnt signaling pathway in adenoid cystic carcinoma. Mod Pathol. 2004;17(12):1475–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsuda Y, Schlange T, Oakeley EJ, Boulay A, Hynes NE. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 2009;11(3):R32.PubMedCrossRefGoogle Scholar
  12. 12.
    Parker DS, Jemison J, Cadigan KM. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development. 2002;129(11):2565–76.PubMedGoogle Scholar
  13. 13.
    Townsley FM, Cliffe A, Bienz M. Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol. 2004;6(7):626–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Townsley FM, Thompson B, Bienz M. Pygopus residues required for its binding to Legless are critical for transcription and development. J Biol Chem. 2004;279(7):5177–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Popadiuk CM, Xiong J, Wells MG, Andrews PG, Dankwa K, Hirasawa K, et al. Antisense suppression of pygopus2 results in growth arrest of epithelial ovarian cancer. Clin Cancer Res. 2006;12(7 Pt 1):2216–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Andrews PG, Lake BB, Popadiuk C, Kao KR. Requirement of Pygopus 2 in breast cancer. Int J Oncol. 2007;30(2):357–63.PubMedGoogle Scholar
  17. 17.
    Fiedler M, Sanchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Muller J, et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell. 2008;30(4):507–18.PubMedCrossRefGoogle Scholar
  18. 18.
    Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419(6905):407–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol. 2009;185(5):811–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Horsley V. Epigenetics, Wnt signaling, and stem cells: the Pygo2 connection. J Cell Biol. 2009;185(5):761–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284(1):99–110.PubMedCrossRefGoogle Scholar
  22. 22.
    Pawson T, Nash P. Protein–protein interactions define specificity in signal transduction. Genes Dev. 2000;14(9):1027–47.PubMedGoogle Scholar
  23. 23.
    Lockhart AC, Berlin JD. The epidermal growth factor receptor as a target for colorectal cancer therapy. Semin Oncol. 2005;32(1):52–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH, et al. Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol. 2001;158(4):1245–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Hemming AW, Davis NL, Kluftinger A, Robinson B, Quenville NF, Liseman B, et al. Prognostic markers of colorectal cancer: an evaluation of DNA content, epidermal growth factor receptor, and Ki-67. J Surg Oncol. 1992;51(3):147–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K, Ludwig H. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer. 1993;71(8):2454–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Veale D, Kerr N, Gibson GJ, Kelly PJ, Harris AL. The relationship of quantitative epidermal growth factor receptor expression in non-small cell lung cancer to long term survival. Br J Cancer. 1993;68(1):162–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Yano H, Shiozaki H, Kobayashi K, Yano T, Tahara H, Tamura S, et al. Immunohistologic detection of the epidermal growth factor receptor in human esophageal squamous cell carcinoma. Cancer. 1991;67(1):91–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Itakura Y, Sasano H, Shiga C, Furukawa Y, Shiga K, Mori S, et al. Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer. 1994;74(3):795–804.PubMedCrossRefGoogle Scholar
  30. 30.
    Boone J, van Hillegersberg R, Offerhaus GJ, van Diest PJ, Borel Rinkes IH, Ten Kate FJ. Targets for molecular therapy in esophageal squamous cell carcinoma: an immunohistochemical analysis. Dis Esophagus. 2009;22(6):496–504.PubMedCrossRefGoogle Scholar
  31. 31.
    Carneiro A, Isinger A, Karlsson A, Johansson J, Jonsson G, Bendahl PO, et al. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer. 2008;8:98.PubMedCrossRefGoogle Scholar
  32. 32.
    Civenni G, Holbro T, Hynes NE. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep. 2003;4(2):166–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Wittekind C, Oberschmid B. TNM classification of malignant tumors 2010: general aspects and amendments in the general section. Pathologe. 2010;31(5):333–4, 6–8.Google Scholar
  34. 34.
    Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, et al. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes. 2005;19(2):101–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelleher FC, Fennelly D, Rafferty M. Common critical pathways in embryogenesis and cancer. Acta Oncol. 2006;45(4):375–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Jessen S, Gu B, Dai X. Pygopus and the Wnt signaling pathway: a diverse set of connections. BioEssays. 2008;30(5):448–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Stadeli R, Basler K. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins. Mech Dev. 2005;122(11):1171–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci. 2006;119(Pt 7):1453–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen J, Luo Q, Yuan Y, Huang X, Cai W, Li C et al. Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol. 2010;30(24):5621–35.Google Scholar
  40. 40.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. A new nuclear component of the Wnt signalling pathway. Nat Cell Biol. 2002;4(5):367–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99(2):214–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Gibault L, Metges JP, Conan-Charlet V, Lozac’h P, Robaszkiewicz M, Bessaguet C, et al. Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br J Cancer. 2005;93(1):107–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, Enomoto N, et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer. 2006;118(5):1173–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Baron AE, et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(2):111–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang YL, Xu KL, Zhou Y, Gao X, Chen LR. Correlation of epidermal growth factor receptor overexpression with increased epidermal growth factor receptor gene copy number in esophageal squamous cell carcinomas. Chin Med J (Engl). 2012;125(3):450–4.Google Scholar
  48. 48.
    Islami F, Pourshams A, Nasrollahzadeh D, Kamangar F, Fahimi S, Shakeri R, et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case–control study. BMJ. 2009;338:b929.PubMedCrossRefGoogle Scholar
  49. 49.
    Morita M, Kumashiro R, Kubo N, Nakashima Y, Yoshida R, Yoshinaga K et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J Clin Oncol. 2010;15(2):126–34.Google Scholar
  50. 50.
    Hu T, Li C. Convergence between Wnt–beta-catenin and EGFR signaling in cancer. Mol Cancer. 2010;9:236.Google Scholar
  51. 51.
    Heeg S, Hirt N, Queisser A, Schmieg H, Thaler M, Kunert H et al. EGFR overexpression induces activation of telomerase via PI3K/AKT-mediated phosphorylation and transcriptional regulation through Hif1-alpha in a cellular model of oral-esophageal carcinogenesis. Cancer Sci. 2011;102(2):351–60.Google Scholar
  52. 52.
    Li H, Gao Q, Guo L, Lu SH. The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biol Ther. 2011;11(11):950–8.Google Scholar
  53. 53.
    Kinoshita T, Takahashi Y, Sakashita T, Inoue H, Tanabe T, Yoshimoto T. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochim Biophys Acta. 1999;1438(1):120–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Hseu YC, Chen SC, Tsai PC, Chen CS, Lu FJ, Chang NW, et al. Inhibition of cyclooxygenase-2 and induction of apoptosis in estrogen-nonresponsive breast cancer cells by Antrodia camphorata. Food Chem Toxicol. 2007;45(7):1107–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Moreira L, Castells A. Cyclooxygenase as a target for colorectal cancer chemoprevention. Curr Drug Targets. 2011;12(13):1888–94.Google Scholar
  56. 56.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89(12):2637–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Khuri FR, Wu H, Lee JJ, Kemp BL, Lotan R, Lippman SM, et al. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res. 2001;7(4):861–7.PubMedGoogle Scholar
  58. 58.
    Zhang L, Wu YD, Li P, Tu J, Niu YL, Xu CM et al. Effects of cyclooxygenase-2 on human esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17(41):4572–80.Google Scholar
  59. 59.
    Zhi H, Wang L, Zhang J, Zhou C, Ding F, Luo A, et al. Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis. 2006;27(6):1214–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee CH, Hung HW, Hung PH, Shieh YS. Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Mol Cancer. 2010;9:64.Google Scholar
  61. 61.
    Agarwal A, Das K, Lerner N, Sathe S, Cicek M, Casey G, et al. The AKT/I kappa B kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-kappa B and beta-catenin. Oncogene. 2005;24(6):1021–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Mizushima T, Nakagawa H, Kamberov YG, Wilder EL, Klein PS, Rustgi AK. Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells. Cancer Res. 2002;62(1):277–82.PubMedGoogle Scholar
  63. 63.
    Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem. 2002;277(34):30935–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Wei Q, Chen L, Sheng L, Nordgren H, Wester K, Carlsson J. EGFR, HER2 and HER3 expression in esophageal primary tumours and corresponding metastases. Int J Oncol. 2007;31(3):493–9.PubMedGoogle Scholar
  65. 65.
    Zhang G, Zhang Q, Zhang Q, Yin L, Li S, Cheng K et al. Expression of nucleostemin, epidermal growth factor and epidermal growth factor receptor in human esophageal squamous cell carcinoma tissues. J Cancer Res Clin Oncol. 2010;136(4):587–94.Google Scholar
  66. 66.
    Delektorskaia VV, Chemeris G, Kononets PV, Grigorchuk A. Immunohistochemical study of epidermal growth factor receptor expression in esophageal squamous cell carcinoma. Arkh Patol. 2010;72(5):3–6.Google Scholar
  67. 67.
    Yu WW, Guo YM, Zhu M, Cai XW, Zhu ZF, Zhao WX et al. Clinicopathological and prognostic significance of EGFR over-expression in esophageal squamous cell carcinoma: a meta-analysis. Hepatogastroenterology. 2011;58(106):426–31.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Meysam Moghbeli
    • 1
  • Mohammad Reza Abbaszadegan
    • 1
    • 2
  • Moein Farshchian
    • 3
  • Mehdi Montazer
    • 4
  • Reza Raeisossadati
    • 5
  • Abbas Abdollahi
    • 6
  • Mohammad Mahdi Forghanifard
    • 5
  1. 1.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.Medical School, Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
  3. 3.Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  4. 4.Department of Pathology, Omid HospitalMashhad University of Medical SciencesMashhadIran
  5. 5.Department of Biology, Damghan BranchIslamic Azad UniversityDamghanIran
  6. 6.Department of General Surgery, Ghaem HospitalMashhad University of Medical SciencesMashhadIran

Personalised recommendations