Medical Oncology

, Volume 29, Issue 5, pp 3421–3430

Prediction and identification of B cell epitopes derived from EWS/FLI-l fusion protein of Ewing’s sarcoma

  • Huiwen Liu
  • Lu Huang
  • Jiaquan Luo
  • Wenzhao Chen
  • Zhanmin Zhang
  • Xiang Liao
  • Min Dai
  • Yong Shu
  • Kai Cao
Original Paper
  • 135 Downloads

Abstract

To predict B cell epitope of Ewing’s sarcoma EWS/FLI-l fusion protein and to analyze its antigenicity and immunogenicity. Comprehensive algorithms were applied to predict the possible B cell epitopes of EWS/FLI-l fusion protein. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analysis were performed to identify the synthesized epitope peptides, ELISA assays and Western blot to detect the antigenicity, and the immunogenicity of epitope peptides. Three B cell epitopes were screened out, and HPLC and MS analysis confirmed all three synthesized epitope peptides were demandable. ELISA assays verified all three epitope peptides could prime intense antigen–antibody reaction and induce ideal antibody titers after immunization to the New Zealand white rabbit. However, Western blot confirmed that antiserum of one of these epitope peptides could not recognize EWS/FLI-1 protein. Two B cell epitopes, PQDGNKPTETSQPQ and DPDEVARRWGQRKS, derived from EWS/FLI-l protein, are identified to have potential antigenicity and immunogenicity.

Keywords

Ewing’s sarcoma EWS/FLI-l fusion protein B cell epitope Antigenicity Immunogenicity 

References

  1. 1.
    Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348:694–701.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker LM, Pendergrass TW, Sanders JE, et al. Survival after recurrence of Ewing’s sarcoma family of tumors. J Clin Oncol. 2005;23:4354–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol. 2003;40:276–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Chansky HA, Barahmand-Pour F, Mei Q, et al. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing’s sarcoma cells in vitro. J Orthop Res. 2004;22:910–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Hu-Lieskovan S, Heidel JD, Bartlett DW, et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Qi CJ, Ning YL, Han YS, et al. Autologous dendritic cell vaccine for estrogen receptor (ER)/progestin receptor (PR) double-negative breast cancer. Cancer Immunol Immunother. 2012. doi: 10.1007/s00262-011-1192-2.
  8. 8.
    Onishi H, Morisaki T, Baba E, et al. Long-term vaccine therapy with autologous whole tumor cell-pulsed dendritic cells for a patient with recurrent rectal carcinoma. Anticancer Res. 2011;31(11):3995–4005.PubMedGoogle Scholar
  9. 9.
    Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.PubMedCrossRefGoogle Scholar
  10. 10.
    de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol. 2000;18:204–13.PubMedGoogle Scholar
  11. 11.
    Kovar H. Ewing’s sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol. 1998;10:334–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Le Deley MC, Delattre O, Schaefer KL, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28(12):1982–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene. 2001;20(40):5747–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldsby RA, Kindt TJ, Kuby J, et al. Immunology. 5th ed. New York: W. H. Freeman; 2002.Google Scholar
  15. 15.
    Meyer-Wentrup F, Richter G, Burdach S. Identification of an immunogenic EWS-FLI1-derived HLA-DR-restricted T helper cell epitope. Pediatr Hematol Oncol. 2005;22:297–308.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao J, Huang L, Chen W, et al. Prediction, screening and identification of HLA-A2.1-restricted CTL epitopes derived from Ewing’s sarcoma EWS-FLI1 fusion protein. The Journal of Immuology. 2010;26:10–5. (Chinese).Google Scholar
  17. 17.
    Cao K, Huang L, Lin ZH, et al. Screening of HLA-A2.1-restricted CTL epitopes derived from Ewing’s sarcoma EWS-FLI1 fusion protein by using molecular simulation. Acta Chim Sinica. 2010;68:1277–84.Google Scholar
  18. 18.
    Garnier J, Robson B. The GOR method for predicting secondary structures in proteins. In: Fasman GD, editor. Prediction of Protein Structure and the Principles of Protein Conformation. New York: Plenum Press; 1989. p. 417–65.CrossRefGoogle Scholar
  19. 19.
    Chou PY, Fasman GD. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Eisenberg D. The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc Natl Acad Sci. 2003;100(20):11207–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Jameson BA, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988;4:181–6.PubMedGoogle Scholar
  22. 22.
    Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Emmini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Viorol. 1985;55(3):836–9.Google Scholar
  24. 24.
    Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwissenschaften. 1985;72(4):212–3.CrossRefGoogle Scholar
  25. 25.
    Chen W, Huang L, Huang S, et al. The Construction And Identification Of Prokaryotic Expression Vector pQE30-EWS-FLI1. J Chongqing Med Univers. 2010;35:645–8. (Chinese).Google Scholar
  26. 26.
    Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.PubMedCrossRefGoogle Scholar
  27. 27.
    Ackermann B, Tröger A, Glouchkova L, et al. Characterization of CD34 + progenitor-derived dendritic cells pulsed with tumor cell lysate for a vaccination strategy in children with malignant solid tumors and a poor prognosis. Klin Padiatr. 2004;216(3):176–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang S, Guo W, Guo Y, et al. In vitro antitumor immune response induced by fusion of dendritic cells and Ewing’s sarcoma cells. Zhonghua Wai Ke Za Zhi. 2005;43(12):803–6. (Chinese).Google Scholar
  29. 29.
    Qu HY, Guo W, He XJ. Construction of recombinant adenoviral vector containing gene of EWS-FLI1 and antitumor immunity of its modified dentritic cell in vitro. Beijing Da Xue Xue Bao. 2006;38(6):623–7. (Chinese).Google Scholar
  30. 30.
    Guo W, Guo Y, Tang S, et al. Dendritic cell-Ewing’s sarcoma cell hybrids enhance antitumor immunity. Clin Orthop Relat Res. 2008;466(9):2176–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Zaiss AK, Liu Q, Bowen GP, et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76(9):4580–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Nardin EH, Calvo-Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J Immunol. 2001;166:481–9.PubMedGoogle Scholar
  33. 33.
    Dakappagari NK, Pyles J, Parihar R, et al. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J Immunol. 2003;170:4242–53.PubMedGoogle Scholar
  34. 34.
    Valmori D, Souleimanian NE, Hesdorffer CS, et al. Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clin Immunol. 2005;117:24–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaseitsiwe S, Valentini D, Mahdavifar S, et al. Peptide Microarray-Based Identification of Mycobacterium tuberculosis Epitope Binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clin Vaccine Immunol. 2009;17(1):168–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Linnebacher M, Lorenz P, Koy C, et al. Clonality characterization of natural epitope-specific antibodies against the tumor-related antigen topoisomerase IIa by peptide chip and proteome analysis: a pilot study with colorectal carcinoma patient samples. Anal Bioanal Chem. 2012;403(1):227–38.PubMedCrossRefGoogle Scholar
  37. 37.
    Paes C, Ingalls J, Kampani K, et al. Atomic-Level Mapping of Antibody Epitopes on a GPCR. J Am Chem Soc. 2009;131(20):6952–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang ZW, Zhang YG, Wang YL, et al. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet Microbiol. 2010;140(1–2):25–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang JM, Wang HJ, Du L, et al. Screening and identification of novel B cell epitopes in human heparanase and their anti-invasion property for hepatocellular carcinoma. Cancer Immunol Immunother. 2009;58(9):1387–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Cao K, Huang L, An H, et al. Prediction for secondary structure and B cell epitopes of fusion region in EWS-FLI1 protein of Ewing’s sarcoma. J Chin immunol. 2008;24:11–5. (Chinese).Google Scholar
  41. 41.
    Staege MS, Gorelov V, Bulankin A, et al. Stable transgenic expression of IL-2 and HSV1-tk by single and fusion tumor cell lines bearing EWS/FLI-1 chimeric genes. Pediatr Hematol Oncol. 2003;20:119–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Loughran ST, Walls D. Purification of poly-histidine-tagged proteins. Methods Mol Biol. 2011;681:311–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Huiwen Liu
    • 1
  • Lu Huang
    • 2
  • Jiaquan Luo
    • 1
  • Wenzhao Chen
    • 1
  • Zhanmin Zhang
    • 3
  • Xiang Liao
    • 1
  • Min Dai
    • 1
  • Yong Shu
    • 1
  • Kai Cao
    • 1
  1. 1.Department of OrthopaedicsThe First Affiliated Hospital of Nanchang UniversityNanchangPeople’s Republic of China
  2. 2.Department of Child CareJiangxi Maternal and Child Health HospitalNanchangPeople’s Republic of China
  3. 3.Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople’s Republic of China

Personalised recommendations