Medical Oncology

, Volume 29, Issue 4, pp 2626–2632 | Cite as

S100B protein as a possible participant in the brain metastasis of NSCLC

  • Xiaowen Pang
  • Jie Min
  • Lili Liu
  • Yi Liu
  • Ningqiang Ma
  • Helong Zhang
Original Paper

Abstract

Brain metastasis is a frequent occurrence in lung cancer, especially non-small cell lung cancer (NSCLC), the prognosis for NSCLC with brain metastasis is very poor. Our previous study found high S100B expression in the brain-specific metastatic NSCLC line PC14/B, suggested S100B is closely correlated with brain metastasis in NSCLC. However, the details have not yet been revealed. The aim of this study was to investigate the correlation between S100B and brain metastasis in NSCLC and to study the effects of S100B on non-brain metastatic NSCLC line PC14. We investigated serum S100B levels in 30 newly diagnosed NSCLC patients (15 with brain metastasis and 15 without brain metastasis) using enzyme-linked immunosorbent assay. Results showed that serum S100B levels were significant higher in NSCLC patients with brain metastasis compared to those without brain metastasis (P < 0.01). We constructed the full-length S100B expression vector and transfected into PC14 cells. MTT and flow cytometric analysis showed that S100B transfection promoted cell proliferation and inhibited cell apoptosis (P < 0.05). Transwell migration and invasion assays indicated that S100B transfection promoted cell invasion and cell migration compared to control cells transfected with empty vector alone (P < 0.01). These results suggested that S100B could be involved in the development of brain metastasis in NSCLC.

Keywords

S100B Non-small cell lung cancer Brain metastasis Proliferation Migration Invasion 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30973488). We thank professor Sone and Yano (Third Department of Internal Medicine, University of Tokushima School of Medicine, Japan) for his generous gift of cell line.

Conflict of interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    Mulvenna PM. The management of brain metastases in patients with non-small cell lung cancer-is it time to go back to the drawing board? Clin Oncol (R Coll Radiol). 2010;22(5):365–73.CrossRefGoogle Scholar
  2. 2.
    Soffietti R, Ruda R, Mutani R. Management of brain metastases. J Neurol. 2002;249(10):1357–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas SS, Dunbar EM. Modern multidisciplinary management of brain metastases. Curr Oncol Rep. 2010;12(1):34–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Villa S, Weber DC, Moretones C, Manes A, Combescure C, Jove J, Puyalto P, Cuadras P, Bruna J, Verger E, Balana C, Graus F. Validation of the new Graded Prognostic Assessment scale for brain metastases: a multicenter prospective study. Radiat Oncol. 2011;6:23.PubMedCrossRefGoogle Scholar
  5. 5.
    Zimm S, Wampler GL, Stablein D, Hazra T, Young HF. Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer. 1981;48(2):384–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Sundstrom JT, Minn H, Lertola KK, Nordman E. Prognosis of patients treated for intracranial metastases with whole-brain irradiation. Ann Med. 1998;30(3):296–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelly K, Bunn PA Jr. Is it time to reevaluate our approach to the treatment of brain metastases in patients with non-small cell lung cancer? Lung Cancer. 1998;20(2):85–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoseok I, Lee JI, Nam DH, Ahn YC, Shim YM, Kim K, Choi YS, Kim J. Surgical treatment of non-small cell lung cancer with isolated synchronous brain metastases. J Korean Med Sci. 2006;21(2):236–41.CrossRefGoogle Scholar
  9. 9.
    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Goncalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol. 2010;2010:790431.PubMedGoogle Scholar
  11. 11.
    Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I, Donato R. The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one. Ital J Anat Embryol. 2010;115(1–2):147–51.PubMedGoogle Scholar
  13. 13.
    Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998;6(2):211–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Techniq. 2003;60(6):540–51.CrossRefGoogle Scholar
  16. 16.
    Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R (2010) S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol. doi:10.1155/2010/656481.
  17. 17.
    Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem. 2010;285(35):27487–98.PubMedCrossRefGoogle Scholar
  18. 18.
    Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74(1):143–50.PubMedGoogle Scholar
  19. 19.
    Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, Schavocky JP, Watterson DM, Van Eldik LJ. Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging. 2001;22(5):765–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Hu J, Ferreira A, Van Eldik LJ. S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997;69(6):2294–301.PubMedCrossRefGoogle Scholar
  21. 21.
    Bouwhuis MG, Suciu S, Kruit W, Sales F, Stoitchkov K, Patel P, Cocquyt V, Thomas J, Lienard D, Eggermont AM, Ghanem G. Prognostic value of serial blood S100B determinations in stage IIB-III melanoma patients: a corollary study to EORTC trial 18952. Eur J Cancer. 2011;47(3):361–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Janigro D, Vogelbaum MA, Masaryk T, Mazzone P, Mekhail T, Fazio V, McCartney S, Marchi N, Kanner A. S100 beta as a predictor of brain metastases-Brain versus cerebrovascular damage. Cancer. 2005;104(4):817–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Hu L, Zhang J, Zhu H, Min J, Feng Y, Zhang H. Biological characteristics of a specific brain metastatic cell line derived from human lung adenocarcinoma. Med Oncol. 2010;27(3):708–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Sul J, Posner JB. Brain metastases: epidemiology and pathophysiology. Cancer Treat Res. 2007;136:1–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Carbonell WS, Ansorge O, Sibson N, Muschel R. The vascular basement membrane as “soil” in brain metastasis. Plos One. 2009;4(6):e5857.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang C, Yu D. Microenvironment determinants of brain metastasis. Cell Biosci. 2011;1(1):8.PubMedCrossRefGoogle Scholar
  27. 27.
    Nathoo N, Chahlavi A, Barnett GH, Toms SA. Pathobiology of brain metastases. J Clin Pathol. 2005;58(3):237–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.PubMedGoogle Scholar
  29. 29.
    Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, Rasmussen P, Mayberg MR, Janigro D. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002;940(1–2):102–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Lin J, Blake M, Tang C, Zimmer D, Rustandi RR, Weber DJ, Carrier F. Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J Biol Chem. 2001;276(37):35037–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Rustandi RR, Baldisseri DM, Weber DJ. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol. 2000;7(7):570–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Natl Rev Mol Cell Biol. 2008;9(5):402–12.CrossRefGoogle Scholar
  34. 34.
    Selinfreund RH, Barger SW, Welsh MJ, Van Eldik LJ. Antisense inhibition of glial S100 beta production results in alterations in cell morphology, cytoskeletal organization, and cell proliferation. J Cell Biol. 1990;111(5 Pt 1):2021–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiaowen Pang
    • 1
  • Jie Min
    • 1
  • Lili Liu
    • 1
  • Yi Liu
    • 1
  • Ningqiang Ma
    • 1
  • Helong Zhang
    • 1
  1. 1.Department of Oncology, Tangdu HospitalFourth Military Medical UniversityXi’anChina

Personalised recommendations