Advertisement

Medical Oncology

, Volume 29, Issue 1, pp 161–167 | Cite as

The role of XPD in cell apoptosis and viability and its relationship with p53 and cdk2 in hepatoma cells

  • Hong-yun Wang
  • Gao-fei Xiong
  • Ji-xiang ZhangEmail author
  • Hong Xu
  • Wu-hua Guo
  • Jiang-jing Xu
  • Xiang-yang Xiong
Original Paper

Abstract

We investigated the role of XPD in cell apoptosis of hepatoma and its relationship with p53 during the regulation of hepatoma bio-behavior. RT–PCR and Western blot were used to detect the expression levels of XPD, p53, c-myc, and cdk2. The cell apoptosis and cell cycle were analyzed with flow cytometry. Compared with the control cells, XPD-transfected cells displayed a lower viability and higher apoptosis rate. A decreased expression of p53 gene was detected in XPD-transfected cells. In contrast, both c-myc and cdk2 showed increased expressions of mRNAs and proteins in the transfected cells. Our results indicate that XPD may play an important role in cell apoptosis of hepatoma by inducing an over-expression of p53, but suppressing expressions of c-myc and cdk2.

Keywords

XPD Cell cycle arrest Apoptosis Hepatoma Viability p53 

Notes

Acknowledgments

We thank Dr. Junling Yang from Institute of Zoology, Chinese Academy of Sciences for enormous help. This work was supported by National Natural Science Foundation of China, No. 30360037.

References

  1. 1.
    Emmert S, Leibeling D, Rünger TM. Syndromes with genetic instability: model diseases for (skin) cancerogenesis. J Dtsch Dermatol Ges. 2006;4:721–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res. 2005;3:531–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakajima S, Lan L, Kanno S, Takao M, Yamamoto K, Eker AP, Yasui A. UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. J Biol Chem. 2004;279:46674–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie. 2003;85:1101–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature. 1993;365:852–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Coin F, Marinoni J-C, Rodolfo C, Fribourg S, Pedrini AM, Egly J-M. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genet. 1998;20:184–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lainé JP, Mocquet V, Bonfanti M, Braun C, Egly JM, Brousset P. Common XPD (ERCC2) polymorphisms have no measurable effect on nucleotide excision repair and basal transcription. DNA Repair (Amst). 2007;6:1264–70.CrossRefGoogle Scholar
  8. 8.
    Robles AI, Harris CC. p53-mediated apoptosis and genomic instability diseases. Acta Oncol. 2001;40:696–701.PubMedCrossRefGoogle Scholar
  9. 9.
    Askin DF, Diehl-Jones WL. The neonatal liver: part III: pathophysiology of liver dysfunction. Neonatal Netw. 2003;22:5–15.PubMedGoogle Scholar
  10. 10.
    Becker SA, Lee TH, Butel JS, Slagle BL. Hepatitis B virus X protein interferes with cellular DNA repair. J Virol. 1998;72:266–72.PubMedGoogle Scholar
  11. 11.
    Jaitovich-Groisman I, Benlimame N, Slagle BL, Perez MH, Alpert L, Song DJ, Fotouhi-Ardakani N, Galipeau J, Alaoui-Jamali MA. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem. 2001;276:14124–32.PubMedGoogle Scholar
  12. 12.
    Uhring M, Poterszman A. DNA helicases and human diseases. Med Sci (Paris). 2006;22:1087–94.CrossRefGoogle Scholar
  13. 13.
    Capovilla A, Arbuthnot P. Nucleotide excision repair by extracts of human fetal hepatocytes. FEBS Lett. 2002;518:144–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Robles AI, Wang XW, Harris CC. Drug-induced apoptosis is delayed and reduced in XPD lymphoblastoid cell lines: possible role of TFIIH in p53-mediated apoptotic cell death. Oncogene. 1999;18:4681–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer. 1999;80:875–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Giebler HA, Lemasson I, Nyborg JK. p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol. 2000;20:4849–58.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ Jr. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol. 2000;20:3705–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Léveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996;15:1615–24.PubMedGoogle Scholar
  19. 19.
    Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH, Harris CC. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 1996;10:1219–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Cadoret A, Ovejero C, Saadi-Kheddouci S, Souil E, Fabre M, Romagnolo B, Kahn A, Perret C. Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res. 2001;61:3245–9.PubMedGoogle Scholar
  21. 21.
    Calvisi DF, Ladu S, Hironaka K, Factor VM, Thorgeirsson SS. Vitamin E down-modulates iNOS and NADPH oxidase in c-Myc/TGF-alpha transgenic mouse model of liver cancer. J Hepatol. 2004;41:815–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamajima N, Saito T, Matsuo K, Suzuki T, Nakamura T, Matsuura A, Okuma K, Tajima K. Genotype frequencies of 50 polymorphisms for 241 Japanese non-cancer patients. J Epidemiol. 2002;12:229–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D, Wang XW, Conaway JW, Harris CC, Conaway RC, Reinberg D, Levens D. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell. 2001;104:353–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu J, He L, Collins I, Ge H, Libutti D, Li J, Egly JM, Levens D. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell. 2000;5:331–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Weber A, Liu J, Collins I, Levens D. TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol Cell Biol. 2005;25:147–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Adamczewski JP, Rossignol M, Tassan JP, Nigg EA, Moncollin V, Egly JM. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 1996;15:1877–84.PubMedGoogle Scholar
  27. 27.
    Lolli G, Johnson LN. Recognition of Cdk2 by Cdk7. Proteins. 2007;67:1048–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen J, Larochelle S, Li X, Suter B. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature. 2003;424:228–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong-yun Wang
    • 1
    • 3
  • Gao-fei Xiong
    • 2
    • 3
  • Ji-xiang Zhang
    • 1
    • 3
    Email author
  • Hong Xu
    • 2
  • Wu-hua Guo
    • 3
  • Jiang-jing Xu
    • 3
  • Xiang-yang Xiong
    • 2
  1. 1.Department of Gastroenterology, Second Affiliated HospitalNanchang UniversityNanchang CityPeople’s Republic of China
  2. 2.Department of Physiology of Medical CollegeNanchang UniversityNanchang CityPeople’s Republic of China
  3. 3.Jiangxi Provincial Key Laboratory of Molecular MedicineNanchang CityPeople’s Republic of China

Personalised recommendations