Medical Oncology

, Volume 29, Issue 4, pp 2348–2358

Different impact of intermediate and unfavourable cytogenetics at the time of diagnosis on outcome of de novo AML after allo-SCT: a long-term retrospective analysis from a single institution

  • H. Nahi
  • M. Remberger
  • M. Machaczka
  • J. Ungerstedt
  • J. Mattson
  • O. Ringden
  • Katarina Le-Blanc
  • P. Ljungman
  • H. Hägglund
Original Paper

Abstract

Karyotype of myeloblasts at the time of AML diagnosis has been shown to be prognostic significant for pre-remission outcome and outcome after allo-SCT, but the latter requires further studies. We conducted a retrospective analysis of the impact of intermediate and unfavourable cytogenetics at the time of primary diagnosis on outcome after allo-SCT in de novo AML. The study included 169 patients who underwent allo-SCT at Karolinska University Hospital between 1980 and 2010. Intermediate and unfavourable cytogenetics were found in 129 (76%) and 40 patients (24%), respectively. Myeloablative and reduced-intensity conditioning were given to 120 (71%) and 49 (29%) patients, respectively. Allo-SCT was performed in CR1 in 122 patients (72%). TRM was 16% in both cytogenetics groups. Relapse occurred in 29% patients with intermediate and in 45% patients with unfavourable cytogenetics (P = 0.01). The probabilities of 5-year OS for patients with intermediate and unfavourable cytogenetics were 60 and 43%, respectively (P = 0.02). Multivariate analysis revealed intermediate cytogenetics, chronic GVHD, and recipient CMV-negative serostatus as variables associated with favourable OS. Our study showed that outcome after allo-SCT in de novo AML differs depending on cytogenetic risk-group; however its position in post-remission therapy of eligible AML patients is not threatened.

Keywords

Acute myeloid leukaemia Allogeneic transplantation Cytogenetics Intermediate Unfavourable Chromosomal aberrations 

References

  1. 1.
    Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–907.PubMedCrossRefGoogle Scholar
  2. 2.
    Stone RM, O’Donnell MR, Sekeres MA. Acute myeloid leukemia. Hematol Am Soc Hematol Educ Prog 2004(1):98–117.Google Scholar
  3. 3.
    Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91:756–63.PubMedGoogle Scholar
  4. 4.
    Lowenberg B, Sonneveld P. Resistance to chemotherapy in acute leukemia. Curr Opin Oncol. 1998;10:31–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Keating MJ, Smith TL, Kantarjian H, Cork A, Walters R, Trujillo JM, et al. Cytogenetic pattern in acute myelogenous leukemia: a major reproducible determinant of outcome. Leukemia. 1988;2(7):403–12.PubMedGoogle Scholar
  6. 6.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a southwest oncology group/eastern cooperative oncology group study. Blood. 2000;96:4075–83.PubMedGoogle Scholar
  7. 7.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The medical research council adult and children’s leukaemia working parties. Blood. 1998;92:2322–33.PubMedGoogle Scholar
  8. 8.
    Schlenk RF, Pasquini MC, Pérez WS, Zhang MJ, Krauter J, Antin JH, et al. HLA-identical sibling allogeneic transplants versus chemotherapy in acute myelogenous leukemia with t(8;21) in first complete remission: collaborative study between the German AML intergroup and CIBMTR. Biol Blood Marrow Transplant. 2008;14:187–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Nguyen S, Leblanc T, Fenaux P, Witz F, Blaise D, Pigneux A, et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood. 2002;99:3517–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Delaunay J, Vey N, Leblanc T, Fenaux P, Rigal-Huguet F, Witz F, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML intergroup. Blood. 2003;102:462–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom medical research council AML11 trial. Blood. 2001;98:1312–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107:3847–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Gale RP, Horowitz MM, Weiner RS, Ash RC, Atkinson K, Babu R, et al. Impact of cytogenetic abnormalities on outcome of bone marrow transplants in acute myelogenous leukemia in first remission. Bone Marrow Transplant. 1995;16:203–8.PubMedGoogle Scholar
  14. 14.
    Ferrant A, Labopin M, Frassoni F, Prentice HG, Cahn JY, Blaise D, et al. Karyotype in acute myeloblastic leukemia: prognostic significance for bone marrow transplantation in first remission: a European group for blood and marrow transplantation study. Acute leukemia working party of the European group for blood and marrow transplantation (EBMT). Blood. 1997;90:2931–8.PubMedGoogle Scholar
  15. 15.
    Kim DH, Sohn SK, Kim JG, Lee NY, Sung WJ, Baek JH, et al. Parameters for predicting allogeneic PBSCT outcome of acute myeloid leukemia: cytogenetics at presentation versus disease status at transplantation. Ann Hematol. 2005;84:25–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Ogawa H, Ikegame K, Kawakami M, Takahashi S, Sakamaki H, Karasuno T, et al. Impact of cytogenetics on outcome of stem cell transplantation for acute myeloid leukemia in first remission: a large-scale retrospective analysis of data from the Japan society for hematopoietic cell transplantation. Int J Hematol. 2004;79:495–500.PubMedCrossRefGoogle Scholar
  17. 17.
    Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities amongst 5876 younger adult patients treated in the UK medical research council TRIALS. Blood. 2010;116:354–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–8.PubMedGoogle Scholar
  19. 19.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11:1416–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.PubMedCrossRefGoogle Scholar
  22. 22.
    An International System for Human Cytogenetic Nomenclature ISCN. Report of the Standing Committee on Human Cytogenetic Nomenclature. Cytogenet Cell Genet. 1978;1978(21):309–409.Google Scholar
  23. 23.
    An International System for Human Cytogenetic Nomenclature ISCN. Report of the Standing Committee on Human Cytogenetic Nomenclature. Birth Defects Orig Artic Ser. 1985;1985(21):1–117.Google Scholar
  24. 24.
    ISCN. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2005.Google Scholar
  25. 25.
    Schaffer M, Malmberg KJ, Ringden O, Ljunggren HG, Remberger M. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation. 2004;78:1081–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Hägglund H, Ringden O, Remberger M, Lonnqvist B, Sparrelid E, Tammik L, et al. Faster neutrophil and platelet engraftment, but no differences in acute GVHD or survival, using peripheral blood stem cells from related and unrelated donors, compared to bone marrow. Bone Marrow Transplant. 1998;22:131–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Ringden O, Ruutu T, Remberger M, Nikoskelainen J, Volin L, Vindelov L, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic bone marrow transplantation group. Blood. 1994;83:2723–30.PubMedGoogle Scholar
  28. 28.
    Ringden O, Pihlstedt P, Markling L, Aschan J, Baryd I, Ljungman P, et al. Prevention of graft-versus-host disease with T cell depletion or cyclosporin and methotrexate. A randomized trial in adult leukemic marrow recipients. Bone Marrow Transplant. 1991;7:221–6.PubMedGoogle Scholar
  29. 29.
    Ringden O, Remberger M, Persson U, Ljungman P, Aldener A, Andström E, et al. Similar incidence of graft-versus-host disease using HLA-A, -B and -DR identical unrelated bone marrow donors as with HLA-identical siblings. Bone Marrow Transplant. 1995;15:619–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Remberger M, Mattsson J, Svahn BM, Ringden O. Using reduced intensity conditioning and HLA-identical sibling donors, antithymocyte globulin increases the risk of relapse, which can be overcome by a high stem cell dose. Bone Marrow Transplant. 2008;42:769–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Ringden O, Backman L, Lonnqvist B, Heimdahl A, Lindholm A, Bolme P, et al. A randomized trial comparing use of cyclosporin and methotrexate for graft-versus-host disease prophylaxis in bone marrow transplant recipients with haematological malignancies. Bone Marrow Transplant. 1986;1:41–51.PubMedGoogle Scholar
  32. 32.
    Svahn BM, Remberger M, Myrback KE, Holmberg K, Eriksson B, Hentschke P, et al. Home care during the pancytopenic phase after allogeneic hematopoietic stem cell transplantation is advantageous compared with hospital care. Blood. 2002;100:4317–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Hagglund H, Ringden O, Oman S, Remberger M, Carlens S, Mattsson J. A prospective randomized trial of Filgrastim (r-metHuG-CSF) given at different times after unrelated bone marrow transplantation. Bone Marrow Transplant. 1999;24:831–6.PubMedCrossRefGoogle Scholar
  34. 34.
    de Lima M, Anagnostopoulos A, Munsell M, Shahjahan M, Ueno N, Ippoliti C, et al. Nonablative versus reduced-intensity conditioning regimens in the treatment of acute myeloid leukemia and high-risk myelodysplastic syndrome: dose is relevant for long-term disease control after allogeneic hematopoietic stem cell transplantation. Blood. 2004;104:865–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Tauro S, Craddock C, Peggs K, Begum G, Mahendra P, Cook G, et al. Allogeneic stem-cell transplantation using a reduced-intensity conditioning regimen has the capacity to produce durable remissions and long-term disease-free survival in patients with high-risk acute myeloid leukemia and myelodysplasia. J Clin Oncol. 2005;23:9387–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimoni A, Hardan I, Shem-Tov N, Yerushalmi R, Nagler A. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning long-term follow-up. Leukemia. 2010;24:1050–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Ringden O, Labopin M, Ehninger G, Niederwieser D, Olsson R, Basara N, et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J Clin Oncol. 2009;27:4570–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, Shizuru JA, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010;28:2859–67.PubMedCrossRefGoogle Scholar
  39. 39.
    Forman SJ. What is the role of reduced-intensity transplantation in the treatment of older patients with AML? Hematol Am Soc Hematol Educ Prog 2009(1):406–413.Google Scholar
  40. 40.
    Mrozek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18:115–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Gale RP, Horowitz MM, Weiner RS, Ash RC, Atkinson K, Babu R, et al. Impact of cytogenetic abnormalities on outcome of bone marrow transplants in acute myelogenous leukemia in first remission. Bone Marrow Transplant. 1995;16:203–8.PubMedGoogle Scholar
  42. 42.
    Krauter J, Wagner K, Schafer I, Marschalek R, Meyer C, Heil G, et al. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German acute myeloid leukemia intergroup. J Clin Oncol. 2009;27:3000–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Mrozek K, Heinonen K, Lawrence D, Carroll AJ, Koduru PR, Rao KW, et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood. 1997;90:4532–8.PubMedGoogle Scholar
  44. 44.
    Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23:1490–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Rubnitz JE, Raimondi SC, Tong X, Srivastava DK, Razzouk BI, Shurtleff SA, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20:2302–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97(11):3589–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Nahi H, Lehmann S, Bengtzen S, Jansson M, Mollgard L, Paul C, et al. Chromosomal aberrations in 17p predict in vitro drug resistance and short overall survival in acute myeloid leukemia. Leuk Lymphoma. 2008;49:508–16.PubMedCrossRefGoogle Scholar
  48. 48.
    Seifert H, Mohr B, Thiede C, Oelschlagel U, Schakel U, Illmer T, et al. The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia. 2009;23:656–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Schlenk RF, Döhner K, Mack S, Stoppel M, Király F, Götze K, et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German–Austrian trial AMLHD98A. J Clin Oncol. 2010;28:4642–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Walter RB, Pagel JM, Gooley TA, Petersdorf EW, Sorror ML, Woolfrey AE, et al. Comparison of matched unrelated and matched related donor myeloablative hematopoietic cell transplantation for adults with acute myeloid leukemia in first remission. Leukemia. 2010;24:1276–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304:1529–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.PubMedGoogle Scholar
  53. 53.
    Ringden O, Pavletic SZ, Anasetti C, Barrett AJ, Wang T, Wang D, et al. The graft-versus-leukemia effect using matched unrelated donors is not superior to HLA-identical siblings for hematopoietic stem cell transplantation. Blood. 2009;113:3110–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Ringden O, Hermans J, Labopin M, Apperley J, Gorin NC, Gratwohl A. The highest leukaemia-free survival after allogeneic bone marrow transplantation is seen in patients with grade I acute graft-versus-host disease. Acute and chronic leukaemia working parties of the European group for blood and marrow transplantation (EBMT). Leuk Lymphoma. 1996;24:71–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Ferrant A, Labopin M, Frassoni F, Prentice HG, Cahn JY, Blaise D, et al. Karyotype in acute myeloblastic leukemia: prognostic significance for bone marrow transplantation in first remission: a European group for blood and marrow Transplantation study. Acute leukemia working party of the European group for blood and marrow transplantation (EBMT). Blood. 1997;90:2931–8.PubMedGoogle Scholar
  56. 56.
    Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • H. Nahi
    • 1
  • M. Remberger
    • 2
  • M. Machaczka
    • 1
  • J. Ungerstedt
    • 1
  • J. Mattson
    • 2
  • O. Ringden
    • 2
  • Katarina Le-Blanc
    • 1
  • P. Ljungman
    • 1
  • H. Hägglund
    • 1
  1. 1.Division of Haematology, Department of Medicine, Karolinska Institutet Huddinge and Haematology Centre KarolinskaKarolinska University Hospital HuddingeStockholmSweden
  2. 2.Centre for Allogeneic Stem Cell Transplantation, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations