Medical Oncology

, Volume 29, Issue 3, pp 2191–2199 | Cite as

Autologous hematopoietic stem cell transplantation in multiple myeloma and lymphoma: an analysis of factors influencing stem cell collection and hematological recovery

  • J. S. Ungerstedt
  • E. Watz
  • K. Uttervall
  • B-M Johansson
  • B. E. Wahlin
  • P. Näsman
  • P. Ljungman
  • A. Gruber
  • U. Axdorph Nygell
  • H. Nahi
Original Paper

Abstract

Autologous stem cell transplantation is standard treatment for newly diagnosed younger patients with multiple myeloma and for relapsed or refractory Hodgkin or non-Hodgkin lymphoma. Patient characteristics influencing the yield from stem cell collection and time from transplant to platelet recovery were retrospectively analyzed in 630 consecutive patients, attempting to define adequate amounts of CD34+ cells to collect and reinfuse; 509/630 patients (81%) mobilized the requested CD34+ cell number. Factors influencing the harvest yield were age (P < 0.001) and gender, where 85% of men and 78% of women (P < 0.02) attained the requested stem cell amount. Time to platelet recovery was significantly faster for multiple myeloma patients compared to all other diagnoses (14.6 days compared to 19.8, P < 0.0001). Multiple myeloma patients were older than lymphoma patients but received stem cell transplant up-front as opposed to second line therapy for other patient groups. Multivariate analysis revealed that the most important factor influencing platelet recovery was diagnosis, followed by the amount of reinfused CD34+ cells (P < 0.001, P < 0.05). Blood group O+ had the fastest platelet recovery, whereas blood group A harvested the highest cell amounts. In conclusion, we demonstrate a significant importance of the number of reinfused CD34+ cells on the time to platelet recovery.

Keywords

Chemotherapy Outcome CD34+ hematopoietic stem cell Peripheral autologous stem cell harvest 

Notes

Acknowledgments

We thank associate professor Mona Hansson for sharing her knowledge on autologous stem cell harvest. Svenska Läkaresällskapet is acknowledged for research grant to JSU.

Conflict of interest

None of the authors have any conflict of interest to declare.

References

  1. 1.
    Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, Casassus P, Maisonneuve H, Facon T, Ifrah N, Payen C, Bataille RA. Prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 2009;335(2):91–7.CrossRefGoogle Scholar
  2. 2.
    Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K, Brown J, Drayson MT, Selby PJ. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348(19):1875–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Fermand JP, Ravaud P, Chevret S, Divine M, Leblond V, Belanger C, Macro M, Pertuiset E, Dreyfus F, Mariette X, Boccacio C, Brouet JC. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood. 1998;92(9):3131–6.PubMedGoogle Scholar
  4. 4.
    Giralt S, Stadtmauer EA, Harousseau JL, Palumbo A, Bensinger W, Comenzo RL, Kumar S, Munshi NC, Dispenzieri A, Kyle R, Merlini G, San Miguel J, Ludwig H, Hajek R, Jagannath S, Blade J, Lonial S, Dimopoulos MA, Einsele H, Barlogie B, Anderson KC, Gertz M, Attal M, Tosi P, Sonneveld P, Boccadoro M, Morgan G, Sezer O, Mateos MV, Cavo M, Joshua D, Turesson I, Chen W, Shimizu K, Powles R, Richardson PG, Niesvizky R, Rajkumar SV, Durie BG. International myeloma working group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high-dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia. 2009;23(10):1904–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldschmidt H, Hegenbart U, Wallmeier M, Hohaus S, Engenhart R, Wannenmacher M, Haas R. Peripheral blood progenitor cell transplantation in multiple myeloma following high-dose melphalan-based therapy. Recent Results Cancer Res. 1998;144:27–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Brice P. Managing relapsed and refractory Hodgkin lymphoma. Br J Haematol. 2008;141(1):3–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Linch DC, Winfield D, Goldstone AH, Moir D, Hancock B, McMillan A, Chopra R, Milligan D, Hudson GV. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet. 1993;341(8852):1051–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, Boissevain F, Zschaber R, Muller P, Kirchner H, Lohri A, Decker S, Koch B, Hasenclever D, Goldstone AH, Diehl V. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet. 2002;359(9323):2065–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Ketterer N, Salles G, Raba M, Espinouse D, Sonet A, Tremisi P, Dumontet C, Moullet I, Eljaafari-Corbin A, Neidhardt-Berard EM, Bouafia F, Coiffier B. High CD34(+) cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood. 1998;91(9):3148–55.PubMedGoogle Scholar
  10. 10.
    Gertz MA, Wolf RC, Micallef IN, Gastineau DA. Clinical impact and resource utilization after stem cell mobilization failure in patients with multiple myeloma and lymphoma. Bone Marrow Trans. 2010;45(9):1396–403.CrossRefGoogle Scholar
  11. 11.
    Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF, Westervelt P, Vij R, Abboud CN, Stockerl-Goldstein KE, Sempek DS, Smith AL, DiPersio JF. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Trans. 2008;14(9):1045–56.CrossRefGoogle Scholar
  12. 12.
    Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K, Goldschmidt H, Ho AD. Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Trans. 2010;16(4):490–9.CrossRefGoogle Scholar
  13. 13.
    Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K, Gooley T, Demirer T, Schiffman K, Weaver C, et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol. 1995;13(10):2547–55.PubMedGoogle Scholar
  14. 14.
    Desikan KR, Tricot G, Munshi NC, Anaissie E, Spoon D, Fassas A, Toor A, Zangari M, Badros A, Morris C, Vesole DH, Siegel D, Jagannath S, Barlogie B. Preceding chemotherapy, tumour load and age influence engraftment in multiple myeloma patients mobilized with granulocyte colony-stimulating factor alone. Br J Haematol. 2001;112(1):242–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Oran B, Malek K, Sanchorawala V, Wright DG, Quillen K, Finn KT, La Valley M, Skinner M, Seldin DC. Predictive factors for hematopoietic engraftment after autologous peripheral blood stem cell transplantation for AL amyloidosis. Bone Marrow Transplant. 2005;35(6):567–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, West W. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood. 1995;86(10):3961–9.PubMedGoogle Scholar
  17. 17.
    Sartor MM, Garvin F, Antonenas V, Bradstock KF, Gottlieb DJ. Failure to achieve a threshold dose of CD34+ CD110+ progenitor cells in the graft predicts delayed platelet engraftment after autologous stem cell transplantation. Bone Marrow Trans. 2007;40(9):851–7.CrossRefGoogle Scholar
  18. 18.
    Benedetti G, Patoia L, Giglietti A, Alessio M, Pelicci P, Grignani F. Very large amounts of peripheral blood progenitor cells eliminate severe thrombocytopenia after high-dose melphalan in advanced breast cancer patients. Bone Marrow Trans. 1999;24(9):971–9.CrossRefGoogle Scholar
  19. 19.
    Hoffmann S, Zhou L, Gu Y, Davenport R, Cooling L. Delayed platelet engraftment in group O patients after autologous progenitor cell transplantation. Transfusion. 2005;45(6):885–95.PubMedCrossRefGoogle Scholar
  20. 20.
    De Matteis S, Piccirillo N, Laurenti L, Chiusolo P, Sora F, d’Onofrio G, Leone G, Sica S. ABO type does not affect platelet engraftment after autologous peripheral blood stem cell transplant in a series of 249 hematologic patients. Transfusion. 2008;48(12):2645–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Haas R, Mohle R, Fruhauf S, Goldschmidt H, Witt B, Flentje M, Wannenmacher M, Hunstein W. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood. 1994;83(12):3787–94.PubMedGoogle Scholar
  22. 22.
    Morris CL, Siegel E, Barlogie B, Cottler-Fox M, Lin P, Fassas A, Zangari M, Anaissie E, Tricot G. Mobilization of CD34+ cells in elderly patients (>/= 70 years) with multiple myeloma: influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol. 2003;120(3):413–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Sugrue MW, Williams K, Pollock BH, Khan S, Peracha S, Wingard JR, Moreb JS. Characterization and outcome of “hard to mobilize” lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma. 2000;39(5–6):509–19.PubMedCrossRefGoogle Scholar
  24. 24.
    Gazitt Y, Tian E, Barlogie B, Reading CL, Vesole DH, Jagannath S, Schnell J, Hoffman R, Tricot G. Differential mobilization of myeloma cells and normal hematopoietic stem cells in multiple myeloma after treatment with cyclophosphamide and granulocyte-macrophage colony-stimulating factor. Blood. 1996;87(2):805–11.PubMedGoogle Scholar
  25. 25.
    Mateo G, Corral M, Almeida J, Lopez-Berges C, Nieto J, Garcia-Marcos A, Vazquez L, del Canizo C, Orfao A, San Miguel JF. Immunophenotypic analysis of peripheral blood stem cell harvests from patients with multiple myeloma. Haematologica. 2003;88(9):1013–21.PubMedGoogle Scholar
  26. 26.
    Malik S, Bolwell B, Rybicki L, Copelan O, Duong H, Dean R, Sobecks R, Kalaycio M, Sweetenham J, Pohlman B, Andresen S, Tench S, Koo A, Figueroa P, Copelan E. Apheresis days required for harvesting CD34+ cells predicts hematopoietic recovery and survival following autologous transplantation. Bone Marrow Trans 2011.Google Scholar
  27. 27.
    Stewart DA, Smith C, MacFarland R, Calandra G. Pharmacokinetics and pharmacodynamics of plerixafor in patients with non-Hodgkin lymphoma and multiple myeloma. Biol Blood Marrow Trans. 2009;15(1):39–46.CrossRefGoogle Scholar
  28. 28.
    Stiff P, Micallef I, McCarthy P, Magalhaes-Silverman M, Weisdorf D, Territo M, Badel K, Calandra G. Treatment with plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: implications for the heavily pretreated patient. Biol Blood Marrow Trans. 2009;15(2):249–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. S. Ungerstedt
    • 1
    • 2
  • E. Watz
    • 3
    • 4
  • K. Uttervall
    • 1
    • 2
  • B-M Johansson
    • 4
  • B. E. Wahlin
    • 1
    • 2
  • P. Näsman
    • 5
  • P. Ljungman
    • 1
    • 2
  • A. Gruber
    • 6
  • U. Axdorph Nygell
    • 4
    • 6
  • H. Nahi
    • 1
    • 2
  1. 1.Hematology CenterKarolinska University HospitalStockholmSweden
  2. 2.Department of Medicine Huddinge Karolinska InstitutetKarolinska University HospitalStockholmSweden
  3. 3.Department of Laboratory Medicine, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
  4. 4.Department of Clinical Immunology & Transfusion MedicineKarolinska University HospitalStockholmSweden
  5. 5.Center for Safety ResearchRoyal Institute of Technology, KTHStockholmSweden
  6. 6.Department of Medicine, Solna, Karolinska InstitutetKarolinska University HospitalStockholmSweden

Personalised recommendations