Advertisement

Medical Oncology

, Volume 28, Issue 1, pp 365–376 | Cite as

A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: a huge review

  • Chunming Gong
  • Xueying Hu
  • Yong Gao
  • Yunfei CaoEmail author
  • Feng GaoEmail author
  • Zengnan MoEmail author
Original Paper

Abstract

Studies revealing conflicting results on the role of NAT1 or NAT2 phenotypes on prostate cancer risk led us to perform a meta-analysis to investigate the association of these polymorphisms and prostate cancer risk. The meta-analysis included six studies with NAT1 genotyping (610 prostate cancer cases and 713 controls), and 10 studies with NAT2 genotyping (1,253 cases and 1,722 controls). The fixed effects odds ratio was 0.96 [95% confidence interval (95% CI): 0.75, 1.21; I 2 = 32.9%, P for heterogeneity = 0.189] for the NAT1 genotype, and the random effects odds ratio was 1.10 (95% CI: 0.87, 1.39; I 2 = 49.1%, P for heterogeneity = 0.039) for the NAT2 genotype. For NAT2 polymorphism, a statistically significant association between NAT2 polymorphism and prostate cancer appeared in Asians, but not in Caucasians. In conclusion, the NAT1 or NAT2 phenotypes detoxify carcinogens and their reactive intermediates are unlikely to be the cause of PCa development.

Keywords

Prostate cancer NAT N-Acetyltransferase Phenotype Polymorphism Susceptibility 

References

  1. 1.
    Caporaso N, Goldstein A. Cancer genes: single and susceptibility: exposing the difference. Pharmacogenetics. 1995;5(2):59–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Blum M, Grant DM, McBride W, et al. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990;9(3):193–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Blum M, Demierre A, Grant DM, et al. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci USA. 1991;88:5237–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci USA. 1991;88:6333–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Ebisawa T, Deguchi T. Structure and restriction fragment length polymorphism of genes for human liver arylamine N-acetyltransferases. Biochem Biophys Res Commun. 1991;177:1252–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Costa S, Pinto D, Morais A, et al. Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate. 2005;64:246–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith G, Stanley LA, Sim E, et al. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.PubMedGoogle Scholar
  8. 8.
    d’Errico A, Taioli E, Chen X. Genetic metabolic polymorphisms and the risk of cancer: a review of the literature. Biomarkers. 1996;1:149–73.CrossRefGoogle Scholar
  9. 9.
    Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9:29–42.PubMedGoogle Scholar
  10. 10.
  11. 11.
    Agundez JA, Martinez C, Olivera M, et al. Expression in human prostate of drug-and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer. 1998;78:1361–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Lawson T, Kolar C. Human prostate epithelial cells metabolize chemicals of dietary origin to mutagens. Cancer Lett. 2002;175:141–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Hein DW, Leff MA, Ishibe N, et al. Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environ Mol Mutagen. 2002;40(3):161–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruhn C, Brockmöller J, Cascorbi I, et al. Correlation between genotype and phenotype of the human arylamine N-acetyltransferase type 1 (NAT1). Biochem Pharmacol. 1999;58:1759–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Labuda D, Krajinovic M, Richer C, et al. Rapid detection of CYP1A1, CYP2D6 and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem. 1999;275:84–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Lo-Guidice JM, Allorge D, Chevalier D, et al. Molecular analysis of the N-acetyltransferase 1 gene (NAT1*) using polymerase chain reaction-restriction fragment-single strand conformation polymorphism assay. Pharmacogenetics. 2002;10:293–300.CrossRefGoogle Scholar
  17. 17.
    Smelt VA, Mardon HJ, Sim E. Placental expression of arylamine N-acetyltransferases: evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2. Pharmacol Toxicol. 1998;83:149–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Smelt VA, Upton A, Adjaye J, et al. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet. 2000;9:1101–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Katoh T, Kaneko S, Boissy R, et al. A pilot study testing the association between N-acetyltransferase 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis. 1998;19:1803–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sekine A, Saito S, Iida A, et al. Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. J Hum Genet. 2001;46:314–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao B, Lee E, Yeoh PN, et al. Detection of mutations and polymorphism of N-acetyltransferase 1 gene in Indian, Malay and Chinese populations. Pharmacogenetics. 1998;8:299–304.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin HJ, Probst-Hensch NM, Hughes NC, et al. Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas. Pharmacogenetics. 1998;8:269–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Upton A, Johnson N, Sandy J, et al. Arylamine N-acetyltransferases—of mice, men and microorganisms. Trends Pharmacol Sci. 2001;22:140–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Abe M, Deguchi T, Suzuki T. The structure and characterisation of a fourth allele of polymorphic N-acetyltransferase gene found in the Japanese population. Biochem Biophys Res Commun. 1993;191:811–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hickman D, Sim E. N-Acetyltransferase polymorphism: comparison of phenotype and genotype in humans. Biochem Pharmacol. 1991;42:1007–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Deguchi T. Sequences and expression of alleles of polymorphic arylamine N-acetyltransferase of human liver. J Biol Chem. 1992;267:18140–7.PubMedGoogle Scholar
  27. 27.
    Deguchi T, Mashimo M, Suzuki T. Correlations between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem. 1990;265:12757–60.PubMedGoogle Scholar
  28. 28.
    Sim E, Hickman D. Polymorphism in human N-acetyltransferase—the case of the missing allele. Trends Pharmacol Sci. 1991;12:211–3.CrossRefGoogle Scholar
  29. 29.
    Henning S, Cascorbi I, Münchow B, et al. Association of arylamine N-acetyltransferases NAT1 and NAT2 genotypes to laryngeal cancer risk. Pharmacogenetics. 1999;9:103–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Westphal GA, Reich K, Schultz TG, et al. N-Acetyltransferase 1 and 2 polymorphisms in para-substituted arylamine-induced contact allergy. Br J Dermatol. 2000;142:1121–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia M, Jemal A, Ward E, et al. Global cancer facts and figures 2007. Available from: http://www.cancer.org/downloads/STT/Global_Cancer_Facts_and_Figures_2007_rev.pdf. Accessed May 23, 2008.
  33. 33.
    Klein EA, Thompson IM. Update on chemoprevention of prostate cancer. Curr Opin Urol. 2004;14:143–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Boyle P, Severi G, Giles GG. The epidemiology of prostate cancer. Urol Clin North Am. 2003;30:209–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Yin M, Bastacky S, Chandran U, et al. Prevalence of incidental prostate cancer in the general population: a study of healthy organ donors. J Urol. 2008;179:892–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang CY, Debiec-Rychter M, Schut HA, et al. N-Acetyltransferase expression and DNA binding of N-hydroxyheterocyclic amines in human prostate epithelium. Carcinogenesis. 1999;20:1591–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Hein DW, Grant DM, Sim E. Update on consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenetics. 2000;10(4):291–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Beebe-Dimmer JL, Levin AM, Ray AM, et al. Chromosome 8q24 markers: risk of early-onset and familial prostate cancer. Int J Cancer. 2008;122(12):2876–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Slattery ML, Edwards SL, Samowitz W, et al. Associations between family history of cancer and genes coding for metabolizing enzymes (United States). Cancer Causes Control. 2000;11(9):799–803.PubMedCrossRefGoogle Scholar
  41. 41.
    Agúndez JA. Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab. 2008;9(6):520–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Dalhoff K, Buus Jensen K, Enghusen Poulsen H. Cancer and molecular biomarkers of phase 2. Methods Enzymol. 2005;400:618–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Reszka E, Wasowicz W. Genetic polymorphism of N-acetyltransferase and glutathione S-transferase related to neoplasm of genitourinary system. Minirev Neoplasma. 2002;49(4):209–16.Google Scholar
  44. 44.
    Kinoshita Y, Singh A, Rovito PM Jr, et al. Double primary cancers of the prostate and bladder: a literature review. Clin Prostate Cancer. 2004;3(2):83–6.PubMedGoogle Scholar
  45. 45.
    Hooker S, Bonilla C, Akereyeni F, et al. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis. 2008;11(4):349–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Rovito PM Jr, Morse PD, Spinek K, et al. Heterocyclic amines and genotype of N-acetyltransferases as risk factors for prostate cancer. Prostate Cancer Prostatic Dis. 2005;8(1):69–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang CY, Jones RF, Debiec-Rychter M, et al. Correlation of the genotypes for N-acetyltransferases 1 and 2 with double bladder and prostate cancers in a case-comparison study. Anticancer Res. 2002;22(6B):3529–35.PubMedGoogle Scholar
  48. 48.
    Wadelius M, Autrup JL, Stubbins MJ, et al. Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics. 1999;9(3):333–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Srivastava DS, Mittal RD. Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC Urol. 2005;5:12.PubMedCrossRefGoogle Scholar
  50. 50.
    Gao JP, Huang YD, Yang GZ, et al. Relationship between genetic polymorphisms of metabolizing enzymes and prostate cancer. Zhonghua Nan Ke Xue. 2003;9(1):32–5.PubMedGoogle Scholar
  51. 51.
    Hamasaki T, Inatomi H, Katoh T, et al. N-Acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men. Int J Urol. 2003;10(3):167–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Fukutome K, Watanabe M, Shiraishi T, et al. N-Acetyltransferase 1 genetic polymorphism influences the risk of prostate cancer development. Cancer Lett. 1999;136(1):83–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Iguchi T, Sugita S, Wang CY, et al. MnSOD genotype and prostate cancer risk as a function of NAT genotype and smoking status. In Vivo. 2009;23(1):7–12.PubMedGoogle Scholar
  54. 54.
    Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol. 1999;28:1–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Slager SL, Zarfas KE, Brown WM, et al. Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan Prostate Cancer Genetics Project. Prostate. 2006;66:173–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Xu J, Gillanders EM, Isaacs SD, et al. Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate. 2003;57:320–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Wiklund F, Gillanders EM, Albertus JA, et al. Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate. 2003;57:290–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Edwards S, Meitz J, Eles R, et al. Results of a genome-wide linkage analysis in prostate cancer families ascertained through the ACTANE consortium. Prostate. 2003;57:270–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Stanford JL, Fitzgerald LM, McDonnell SK, et al. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum Mol Genet. 2009;18(10):1839–48.PubMedCrossRefGoogle Scholar
  60. 60.
    Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39:631–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Eeles RA, Kote-Jarai J, Giles GG, et al. Identification of multiple novel prostate cancer susceptibility loci by a genome-wide association study. Nat Genet. 2008;40:316–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40:310–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Ries L, Melbert D, Drapcho M, et al. SEER cancer statistics review (based on November 2007 SEER data submission, posted to the SEER Web site, 2008). Available from: http://seer.cancer.gov/csr/1975_2005/. Accessed 30 May, 2008.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous RegionPeople’s Republic of China
  2. 2.Department of Coloproctological SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous RegionPeople’s Republic of China

Personalised recommendations