Medical Oncology

, Volume 27, Issue 3, pp 654–660 | Cite as

MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell

  • Tan Hao-Xiang
  • Wang Qian
  • Chen Lian-Zhou
  • Huang Xiao-Hui
  • Chen Jin-Song
  • Fu Xin-Hui
  • Cao Liang-Qi
  • Chen Xi-Ling
  • Li Wen
  • Zhang Long-juan
Original Paper


MicroRNAs (miRNAs) are an abundant class of short noncoding RNAs that can posttranscriptionally regulate gene expression in animals. They are also involved in cancer initiation and progression, and their expression profiles serve as phenotypic signatures of different cancers. The roles played by microRNAs specifically in “micromanagement of metastasis” has been addressed only recently. The molecular mechanisms of hepatocellular carcinoma (HCC) metastasis are still poorly understood. Recent evidence implies genetic determinants of cancer metastasis. Because gene expression signature significantly differs between primary metastasis-free HCC and primary HCC with intrahepatic metastases, miRNA expression in those primary HCC may change correspondingly. The 28 up-regulated miRNAs, part of the reported miRNA profiles of HCC, were compared in primary HCC with or without metastases. Only eight miRNAs were found to be significantly up-regulated in primary HCC with metastases while miR-9 had the highest hold change. miR-9 was highly expressed in SK-Hep-1 cell when compared with other hepatoma cell lines and downregulation of miR-9 reduced SK-Hep-1 cell invasion. E-cadherin, a tumor invasion suppressor in HCC, was found to be a putative gene target of miR-9. E-cadherin was up-regulated by miR-9 inhibitor. The findings suggest miR-9 could be involved in HCC metastasis.


Hepatocellular carcinoma Metastasis MicroRNAs miR-9 E-cadherin SK-Hep-1 cell 



This study was supported by Project of National Natural Sciences Foundation of China (2004Z2-E0132).


  1. 1.
    Toyosaka A, Okamoto E, Mitsunobu M, et al. Intrahepatic metastases in hepatocellular carcinoma: evidence for spread via the portal vein as an efferent vessel. Am J Gastroenterol. 1996;91:1610–5.PubMedGoogle Scholar
  2. 2.
    Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8:341–52. doi: 10.1038/nrg2101.CrossRefPubMedGoogle Scholar
  3. 3.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66. doi: 10.1038/nrc1997.CrossRefPubMedGoogle Scholar
  4. 4.
    Steeg PS. Cancer: micromanagement of metastasis. Nature. 2007;449:671–3. doi: 10.1038/449671a.CrossRefPubMedGoogle Scholar
  5. 5.
    Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;24:448–56. doi: 10.1016/j.tig.2008.06.004.CrossRefPubMedGoogle Scholar
  6. 6.
    Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9:416–23. doi: 10.1038/nm843.CrossRefPubMedGoogle Scholar
  7. 7.
    Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8. doi: 10.1038/nature03702.CrossRefPubMedGoogle Scholar
  8. 8.
    Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47:1955–63. doi: 10.1002/hep.22256.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Lee AT, Ma JZ, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem. 2008;283:13205–15. doi: 10.1074/jbc.M707629200.CrossRefPubMedGoogle Scholar
  10. 10.
    Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47:897–907. doi: 10.1002/hep.22160.CrossRefPubMedGoogle Scholar
  11. 11.
    Li W, Xie L, He X, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer. 2008;123:1616–22. doi: 10.1002/ijc.23693.CrossRefPubMedGoogle Scholar
  12. 12.
    Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25:2537–45. doi: 10.1038/sj.onc.1209283.CrossRefPubMedGoogle Scholar
  13. 13.
    Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462–503. doi: 10.1002/1097-0142(195405)7:3<462::AID-CNCR2820070308>3.0.CO;2-E.CrossRefPubMedGoogle Scholar
  14. 14.
    AJCC. AJCC cancer staging manual. New York: Springer; 2002.Google Scholar
  15. 15.
    Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500. doi: 10.1038/ng1536.CrossRefPubMedGoogle Scholar
  16. 16.
    Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98. doi: 10.1016/S0092-8674(03)01018-3.CrossRefPubMedGoogle Scholar
  17. 17.
    Huang GT, Lee HS, Chen CH, et al. Correlation of E-cadherin expression and recurrence of hepatocellular carcinoma. Hepatogastroenterology. 1999;46:1923–7.PubMedGoogle Scholar
  18. 18.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895–904. doi: 10.1038/nm1469.CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035.CrossRefPubMedGoogle Scholar
  20. 20.
    Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;24(9):448–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8. doi: 10.1038/nature06174.CrossRefPubMedGoogle Scholar
  22. 22.
    Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9. doi: 10.1016/S0960-9822(02)00809-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70. doi: 10.1158/0008-5472.CAN-05-1783.CrossRefPubMedGoogle Scholar
  24. 24.
    Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98. doi: 10.1016/j.ccr.2006.01.025.CrossRefPubMedGoogle Scholar
  25. 25.
    Laios A, O’Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7:35. doi: 10.1186/1476-4598-1187-1135.CrossRefPubMedGoogle Scholar
  26. 26.
    Nass D, Rosenwald S, Meiri E et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2008; 2: doi: 10.1111/j.1750-3639.2008.00184.x.
  27. 27.
    Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87:992–1005. doi: 10.1046/j.1365-2168.2000.01513.x.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Tan Hao-Xiang
    • 1
  • Wang Qian
    • 1
  • Chen Lian-Zhou
    • 1
  • Huang Xiao-Hui
    • 1
  • Chen Jin-Song
    • 1
  • Fu Xin-Hui
    • 1
  • Cao Liang-Qi
    • 1
  • Chen Xi-Ling
    • 1
  • Li Wen
    • 1
  • Zhang Long-juan
    • 1
  1. 1.Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations