Medical Oncology

, Volume 27, Issue 2, pp 466–473 | Cite as

Utility of DNA postreplication repair protein Rad6B in neoadjuvant chemotherapy response

  • Malathy P. V. Shekhar
  • Laura A. Biernat
  • Nat Pernick
  • Larry Tait
  • Judith Abrams
  • Daniel W. Visscher
Original Paper


Neoadjuvant chemotherapy is a standard therapy for patients with locally advanced breast cancer (LABC) and is increasingly used for early stage operable breast cancer. Not all patients benefit from it, and reliable markers for predicting response are needed. The cytotoxic effects of chemotherapy are mediated by induction of DNA damage in tumor cells. There is evidence that resistance to chemotherapy is related to enhanced repair of DNA lesions. The postreplication DNA repair (PRR) or translesion synthesis backup DNA repair pathway is critical for cell viability, conferring tolerance to DNA damaging drugs, and maintenance of genomic integrity. However, despite its importance in conferring tolerance to a variety of DNA damaging drugs including cytotoxic chemotherapy, the involvement of this backup repair pathway in chemotherapy response has not been studied. The Rad6B protein is a fundamental component of PRR. We have shown previously that the ability of breast cells to tolerate chemotherapeutic drugs correlates with Rad6B expression levels and PRR capacity. To determine whether Rad6B expression/distribution can be used singly or in combination with p53, Mdr-1/PgP, PCNA or β-catenin as predictors of response to neoadjuvant chemotherapy, we analyzed posttreatment samples from 20 patients with LABC in a retrospective study. Only preferential Rad6B nuclear localization was associated with response to neoadjuvant chemotherapy. Nuclear exclusion with cytoplasmic overexpression of Rad6B was observed in some patients who failed to respond, but the association with response is not statistically significant. This is the first study to report that the postreplication DNA repair protein Rad6B could be used as an independent marker for determining response to neoadjuvant chemotherapy. This is an exploratory study and larger studies utilizing interim evaluations of Rad6B expression, its subcellular localization and repair activity are required to confirm its utility as a predictor of chemotherapeutic response.


Breast cancer Molecular markers Neoadjuvant chemotherapy Immunohistochemistry Therapeutic response 



We thank Dr. Gloria Heppner for critical input and discussion of the manuscript. This work was supported by grants DAMD 17-99-1-9443 and W81XWHO7-1-0562 (MPS) from the U.S. Department of Defense.


  1. 1.
    Hortobagyi GN. Comprehensive management of locally advanced breast cancer. Cancer. 1990;66:1387–91. doi: 10.1002/1097-0142(19900915)66:14+<1387::AID-CNCR2820661414>3.0.CO;2-I.CrossRefPubMedGoogle Scholar
  2. 2.
    Chia S, Swain SM, Byrd DR, Mankoff DA. Locally advanced and inflammatory breast cancer. J Clin Oncol. 2008;26:786–90. doi: 10.1200/JCO.2008.15.0243.CrossRefPubMedGoogle Scholar
  3. 3.
    Bonadonna G, Valagussa P, Brambilla C, Ferrari L, Moliterni A, Terenziani M, et al. Primary chemotherapy in operable breast cancer: eight year experience at the Milan Cancer Institute. J Clin Oncol. 1998;16:93–100.PubMedGoogle Scholar
  4. 4.
    Makris A, Powles TJ, Ashley SE, Chang J, Hickish T, Tidy VA, et al. A reduction in the requirements for mastectomy in a randomized trial of neoadjuvant chemoendocrine therapy in primary breast cancer (see comments). Ann Oncol. 1998;9:1179–84. doi: 10.1023/A:1008400706949. (see comments).CrossRefPubMedGoogle Scholar
  5. 5.
    Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, et al. Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: a unicentre randomized trial with a 124-month median follow-up. Instit Bergonie Bordeaux Groupe Sein (IBBGS). Ann Oncol. 1999;10:47–52. doi: 10.1023/A:1008337009350.CrossRefPubMedGoogle Scholar
  6. 6.
    Gralow JR, Burstein HJ, Wood W, Hortobagyi GN, Gianni L, von Minckwitz G, et al. Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol. 2008;26:814–9. doi: 10.1200/JCO.2007.15.3510.CrossRefPubMedGoogle Scholar
  7. 7.
    Fisher B, Bryant J, Wolmark N, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16:2672–85.PubMedGoogle Scholar
  8. 8.
    Feldman LD, Hortobagyi GN, Buzdar AU, Ames FC, Blumenschein GR. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res. 1986;46:2578–81.PubMedGoogle Scholar
  9. 9.
    Helvic MA, Joynt LK, Cody RL, Pierce IJ, Adler DD, Merajver SD. Locally advanced breast carcinoma: accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy. Radiology. 1996;198:327–32.Google Scholar
  10. 10.
    Vinnicombe SJ, MacVicar AD, Guy RL, Sloane JP, Powles TJ, Knee G, et al. Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation. Radiology. 1996;198:333–40.PubMedGoogle Scholar
  11. 11.
    Kuerer HM, Newman LA, Smith TL, Smith TL, Ames FC, Hunt KK, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17:460–9.PubMedGoogle Scholar
  12. 12.
    Hortobagyi GN, Ames FC, Buzdar AU, Kau SW, McNeese MD, Paulus D, et al. Management of stage III primary breast cancer with primary chemotherapy, surgery, and radiation therapy. Cancer. 1988;62:2507–16. doi: 10.1002/1097-0142(19881215)62:12<2507::AID-CNCR2820621210>3.0.CO;2-D.CrossRefPubMedGoogle Scholar
  13. 13.
    Lawrence CW. The Rad6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? BioEssays. 1994;16:253–8. doi: 10.1002/bies.950160408.CrossRefPubMedGoogle Scholar
  14. 14.
    Reynolds P, Weber S, Prakash L. Rad6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci USA. 1985;82:168–72. doi: 10.1073/pnas.82.1.168.CrossRefPubMedGoogle Scholar
  15. 15.
    Jentsch S, McGrath JP, Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 1987;329:131–4. doi: 10.1038/329131a0.CrossRefPubMedGoogle Scholar
  16. 16.
    Haynes RH, Kunz BA. Life cycle and inheritance. In: Strathern J, Jones E, Broach J, editors. The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1981. p. 371–414.Google Scholar
  17. 17.
    Lawrence CW. Mutagenesis in Saccharomyces cerevisiae. Adv Genet. 1982;21:173–254. doi: 10.1016/S0065-2660(08)60299-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Prakash S, Sung P, Prakash L. In: Straus PR, Wilson SH, editors. The eukaryotic nucleus, vol. I. Caldwell, NJ: Telford Press; 1990. p. 275–92.Google Scholar
  19. 19.
    Sung P, Prakash S, Prakash L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci USA. 1990;87:2695–9. doi: 10.1073/pnas.87.7.2695.CrossRefPubMedGoogle Scholar
  20. 20.
    Sung P, Prakash S, Prakash L. Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol. 1991;221:745–9. doi: 10.1016/0022-2836(91)80169-U.CrossRefPubMedGoogle Scholar
  21. 21.
    Koken MH, Reynolds P, Jaspers-Dekker I, Prakash L, Prakash S, Bootsma D, et al. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci USA. 1991;88:8865–9. doi: 10.1073/pnas.88.20.8865.CrossRefPubMedGoogle Scholar
  22. 22.
    Koken MH, Smit EM, Jaspers-Dekker I, Oostra BA, Hagemeijer A, Bootsma D, et al. Localization of two human homologs, HHR6A and HHR6B, of the yeast DNA repair gene RAD6 to chromosomes Xq24–q25 and 5q23–q31. Genomics. 1992;12:447–53. doi: 10.1016/0888-7543(92)90433-S.CrossRefPubMedGoogle Scholar
  23. 23.
    Roest HP, Baarends WM, de Wit J, van Klaveren JW, Wassenaar E, Hoogerbrugge JW, et al. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol. 2004;24:5485–95. doi: 10.1128/MCB.24.12.5485-5495.2004.CrossRefPubMedGoogle Scholar
  24. 24.
    Shekhar MP, Lyakhovich A, Visscher DW, Heng H, Kondrat N. Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res. 2002;62:2115–24.PubMedGoogle Scholar
  25. 25.
    Shekhar MP, Gerard B, Pauley RJ, Williams BO, Tait L. Rad6B is a positive regulator of beta-catenin stabilization. Cancer Res. 2008;68:1741–50. doi: 10.1158/0008-5472.CAN-07-2111.CrossRefPubMedGoogle Scholar
  26. 26.
    Shekhar MP, Tait L, Gerard B. Essential role of T-Cell Factor/β-catenin in regulation of Rad6B: a potential mechanism for Rad6B overexpression in breast cancer cells. Mol Cancer Res. 2006;4:729–45. doi: 10.1158/1541-7786.MCR-06-0136.CrossRefPubMedGoogle Scholar
  27. 27.
    Lyakhovich A, Shekhar MP. RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene. 2004;23:3097–106. doi: 10.1038/sj.onc.1207449.CrossRefPubMedGoogle Scholar
  28. 28.
    Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 2001;1:233–40. doi: 10.1038/35106009.CrossRefPubMedGoogle Scholar
  29. 29.
    Xin H, Lin W, Sumanasekera W, Zhang Y, Wu X, Wang Z. The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res. 2000;28:2847–54. doi: 10.1093/nar/28.14.2847.CrossRefPubMedGoogle Scholar
  30. 30.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34. doi: 10.1038/nrd1984.CrossRefPubMedGoogle Scholar
  31. 31.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50. doi: 10.1038/nature03319.CrossRefPubMedGoogle Scholar
  32. 32.
    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.PubMedGoogle Scholar
  33. 33.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Drucker MJ, Livingston RB. Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using [technetium 99 m]-sestamibi scintimammography. Cancer. 1999;85:2410–23. doi: 10.1002/(SICI)1097-0142(19990601)85:11<2410::AID-CNCR16>3.0.CO;2-K.CrossRefPubMedGoogle Scholar
  34. 34.
    De Lana M, Varini M, Zucali R, Rovini D, Viganotti G, Valagussa P, et al. Multimodal treatment for locally advanced breast cancer. Result of chemotherapy-radiotherapy versus chemotherapy-surgery. Cancer Clin Trials. 1981;4:229–36.Google Scholar
  35. 35.
    Cordonnier AM, Fuchs RP. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat Res. 1999;435:111–9.PubMedGoogle Scholar
  36. 36.
    Chen CC, Motegi A, Hasegawa Y, Myung K, Kolodner R, D’Andrea A. Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst). 2006;5:1475–88. doi: 10.1016/j.dnarep.2006.07.007.CrossRefGoogle Scholar
  37. 37.
    Bailly V, Lauder S, Prakash S, Prakash L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem. 1997;272:23360–5. doi: 10.1074/jbc.272.37.23360.CrossRefPubMedGoogle Scholar
  38. 38.
    Bailly V, Prakash S, Prakash L. Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and rad18 DNA binding protein. Mol Cell Biol. 1997;17:4536–43.PubMedGoogle Scholar
  39. 39.
    Lyakhovich A, Shekhar MP. Supramolecular complex formation between Rad6B and proteins of the p53 pathway during DNA damage-induced response. Mol Cell Biol. 2003;23:2463–75. doi: 10.1128/MCB.23.7.2463-2475.2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Tordai A, Wang J, Andre F, Liedtke C, Yan K, Sotiriou C, et al. Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res. 2009;10:R37.CrossRefGoogle Scholar
  41. 41.
    Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90:1361–70. doi: 10.1093/jnci/90.18.1361.CrossRefPubMedGoogle Scholar
  42. 42.
    Berry DA, Muss HB, Thor AD, Dressler L, Liu ET, Broadwater G, et al. HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer. J Clin Oncol. 2000;18:3471–9.PubMedGoogle Scholar
  43. 43.
    Zhang F, Yang Y, Smith T, Kau SW, McConathy JM, Esteva FJ, et al. Correlation between HER-2 expression and response to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin, and cyclophosphamide in patients with breast carcinoma. Cancer. 2003;97:1758–65. doi: 10.1002/cncr.11245.CrossRefPubMedGoogle Scholar
  44. 44.
    Rozan S, Vincent-Salomon A, Zafrani B, Validire P, De Cremoux P, Bernoux A, et al. No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int J Cancer. 1998;79:27–33. doi: 10.1002/(SICI)1097-0215(19980220)79:1<27::AID-IJC6>3.0.CO;2-Y.CrossRefPubMedGoogle Scholar
  45. 45.
    Hamilton A, Piccart M. The contribution of molecular markers to the prediction of response in the treatment of breast cancer: a review of the literature on HER-2, p53 and BCL-2. Ann Oncol. 2000;11:647–63. doi: 10.1023/A:1008390429428.CrossRefPubMedGoogle Scholar
  46. 46.
    Lowe SW, Ruley HE, Jacks T, Housman DE. P53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–67. doi: 10.1016/0092-8674(93)90719-7.CrossRefPubMedGoogle Scholar
  47. 47.
    Trock BJ, Leonessa F, Clark R. Multidrug-resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997;89:917–31. doi: 10.1093/jnci/89.13.917.CrossRefPubMedGoogle Scholar
  48. 48.
    Evans TR, Yellowlees A, Foster E, Earl H, Cameron DA, Hutcheon AW, et al. Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: an anglo-celtic cooperative oncology group study. J Clin Oncol. 2005;23:2988–95. doi: 10.1200/JCO.2005.06.156.CrossRefPubMedGoogle Scholar
  49. 49.
    von Minckwitz G, Kümmel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J, et al. German Breast Group. Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: phase III randomized GeparTrio trial. J Natl Cancer Inst. 2008;100:542–51. doi: 10.1093/jnci/djn085.CrossRefGoogle Scholar
  50. 50.
    Snoj N, Bedard PL, de Azambuja E, Cardoso F, Piccart M. Are we HER-ting for innovation in neoadjuvant breast cancer trial design? Breast Cancer Res. 2009;11:201–10.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Malathy P. V. Shekhar
    • 1
    • 2
  • Laura A. Biernat
    • 3
  • Nat Pernick
    • 2
  • Larry Tait
    • 1
  • Judith Abrams
    • 4
    • 5
  • Daniel W. Visscher
    • 6
  1. 1.Breast Cancer Program, Karmanos Cancer Institute Wayne State UniversityDetroitUSA
  2. 2.Department of PathologyWayne State UniversityDetroitUSA
  3. 3.Van Elslander Cancer Center St. John HospitalGrosse Pointe WoodsUSA
  4. 4.Biostatistics Faculty, Karmanos Cancer Institute Wayne State UniversityDetroitUSA
  5. 5.Department of Internal MedicineWayne State UniversityDetroitUSA
  6. 6.Department of PathologyUniversity of MichiganAnn ArborUSA

Personalised recommendations