Medical Oncology

, Volume 27, Issue 2, pp 397–405 | Cite as

Overexpression of FADD enhances 5-fluorouracil-induced apoptosis in colorectal adenocarcinoma cells

  • Anning Yin
  • Yingan Jiang
  • Xianfeng Zhang
  • Hesheng Luo
Original Paper

Abstract

To investigate the mechanism of enhancing apoptosis-inducing effects of 5-fluorouracil on human colorectal adenocarcinoma cells by stable transfection of extrinsic Fas-associated death domain protein (FADD) gene, both in vitro and in vivo. FADD gene of stable overexpression was determined by reverse transcription polymerase chain reaction (RT-PCR) assay and Western blotting assay. After treatment with 5-fluorouracil as an apoptotic inducer, in vitro cell growth activities were investigated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis and its rates were evaluated by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and flow cytometry of annexin V-FITC/PI staining. To examine the combination therapeutic effect of FADD and 5-fluorouracil, tumor xenograft model was prepared for in vivo study. Compared with SW480 and SW480/neo cells, FADD mRNA and protein levels of SW480/FADD cells were higher. Chemosensitivity and apoptosis rates of SW480/FADD cells were remarkably higher than SW480 and SW480/neo cells when treated with 5-fluorouracil. In in vivo study, overexpression of FADD increased the efficacy of 5-fluorouracil-induced inhibition of tumor growth in nude mice. Stable overexpression of extrinsic FADD gene can conspicuously ameliorate apoptosis-inducing effects of 5-fluorouracil on colorectal adenocarcinoma cells, which is a novel strategy to improve chemotherapeutic effects on colorectal cancer.

Keywords

Fas-associated death domain protein (FADD) 5-Fluorouracil Apoptosis Colorectal adenocarcinoma 

Notes

Acknowledgment

This study was supported by a Grant from National Natural Science Foundation of China (NO.30471690).

References

  1. 1.
    Etzioni DA, El-Khoueiry AB, Beart RW Jr. Rates and predictors of chemotherapy use for stage III colon cancer: a systematic review. Cancer. 2008;113(12):3279–89. doi: 10.1002/cncr.23958.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96. doi: 10.3322/CA.2007.0010.CrossRefPubMedGoogle Scholar
  3. 3.
    Lim YJ, Rhee JC, Bae YM, Chun WJ. Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells. World J Gastroenterol. 2007;13(13):1947–52.PubMedGoogle Scholar
  4. 4.
    Pinedo HM, Peters GF. 5-Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988;6(10):1653–64.PubMedGoogle Scholar
  5. 5.
    Sargent DJ, Goldberg RM, Jacobson SD, Macdonald JS, Labianca R, et al. A pool-ed analysis of adjuvant chemotherapy for resected colon cancer in elderly patients. N Engl J Med. 2001;345(15):1091–7. doi: 10.1056/NEJMoa010957.CrossRefPubMedGoogle Scholar
  6. 6.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81(4):505–12. doi: 10.1016/0092-8674(95)90071-3.CrossRefPubMedGoogle Scholar
  7. 7.
    Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer-Avni Y, et al. Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem. 1995;270(1):387–91. doi: 10.1074/jbc.270.1.387.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim PK, Dutra AS, Chandrasekharappa SC, Puck JM. Genomic structure and map-ing of human FADD, an intracellular mediator of lymphocyte apoptosis. J Immunol. 1996;157(12):5461–6.PubMedGoogle Scholar
  9. 9.
    Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16(2):139–44. doi: 10.1016/j.cellsig.2003.08.007.CrossRefPubMedGoogle Scholar
  10. 10.
    Kondo S, Ishizaka Y, Okada T, Kondo Y, Hitomi M, et al. FADD gene therapy for malignant gliomas in vitro and in vivo. Hum Gene Ther. 1998;9(11):1599–608. doi: 10.1089/hum.1998.9.11-1599.CrossRefPubMedGoogle Scholar
  11. 11.
    Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Kato T, et al. Novel gene therapy for rheumatoid arthritis by FADD gene transfer: induction of apoptosis of rheumatoid synoviocytes but not chondrocytes. Gene Ther. 2000;7(6):527–33. doi: 10.1038/sj.gt.3301127.CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama JI, et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res. 2001;61(3):1029–37.PubMedGoogle Scholar
  13. 13.
    Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med. 1990;322(6):352–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Benson AB 3rd. New approaches to assessing and treating early-stage colon and rectal cancers: cooperative group strategies for assessing optimal approaches in early-stage disease. Clin Cancer Res. 2007;13(22):6913–20. doi: 10.1158/1078-0432.CCR-07-1188.CrossRefGoogle Scholar
  15. 15.
    Andre N, Schmiegel W. Chemoradiotherapy for colorectal cancer. Gut. 2005;54(8):1194–202. doi: 10.1136/gut.2004.062745.CrossRefPubMedGoogle Scholar
  16. 16.
    André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51. doi: 10.1056/NEJMoa032709.CrossRefPubMedGoogle Scholar
  17. 17.
    Lecomte T, Ferraz JM, Zinzindohoué F, Loriot MA, Tregouet DA, et al. Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin Cancer Res. 2004;10(17):5880–8. doi: 10.1158/1078-0432.CCR-04-0169.CrossRefPubMedGoogle Scholar
  18. 18.
    Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5(11):876–85. doi: 10.1038/nrc1736.CrossRefPubMedGoogle Scholar
  19. 19.
    Holler N, Zaru R, Micheau O, Thome M, Attinger A, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–95. doi: 10.1038/82732.CrossRefPubMedGoogle Scholar
  20. 20.
    Imai T, Adachi S, Nishijo K, Ohgushi M, Okada M, et al. FR901228 induces tumor regression associated with induction of Fas ligand and activation of Fas signaling in human osteosarcoma cells. Oncogene. 2003;22(58):9231–42. doi: 10.1038/sj.onc.1207184.CrossRefPubMedGoogle Scholar
  21. 21.
    Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, et al. Phosphorylation of Fas-associated death domain contributes to enhancement of etoposide-induced apoptosis in prostate cancer cells. Jpn J Cancer Res. 2002;93(10):1164–74.PubMedGoogle Scholar
  22. 22.
    Keiji S, Syuichi M, Mitsutoshi N, Eiwa I, Munehiro K, et al. Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. Carcinogenesis. 2004;25(7):1089–97. doi: 10.1093/carcin/bgh130.CrossRefGoogle Scholar
  23. 23.
    Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J. Biol. Chem. 1999;274(12):7987–92. doi: 10.1074/jbc.274.12.7987.CrossRefPubMedGoogle Scholar
  24. 24.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. 1996;85(6):803–15. doi: 10.1016/S0092-8674(00)81265-9.CrossRefPubMedGoogle Scholar
  25. 25.
    Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell. 1996;85(6):817–27. doi: 10.1016/S0092-8674(00)81266-0.CrossRefPubMedGoogle Scholar
  26. 26.
    Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med. 1998;187(4):587–600. doi: 10.1084/jem.187.4.587.CrossRefPubMedGoogle Scholar
  27. 27.
    Astrin SM. Are there molecular targets for therapy of colon cancer? Oncology (Williston Park). 1991;5(10):127–32.Google Scholar
  28. 28.
    Sabaawy HE, Farley T, Ahmed T, Feldman E, Abraham NG. Synergetic effects of retrovirus IFN-alpha gene transfer and 5-FU on apoptosis of colon cancer cells. Acta Haematol. 1999;101(2):82–8. doi: 10.1159/000040929.CrossRefPubMedGoogle Scholar
  29. 29.
    Durai R, Yang SY, Seifalian AM, Winslet MC. Principles and applications of gene therapy in colon cancer. J Gastrointestin Liver Dis. 2008;17(1):59–67.PubMedGoogle Scholar
  30. 30.
    Dong F, Wang L, Davis JJ, Hu W, Zhang L, et al. Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res. 2006;12(17):5224–30. doi: 10.1158/1078-0432.CCR-06-0244.CrossRefPubMedGoogle Scholar
  31. 31.
    Lipinski KS, Djeha AH, Ismail T, Mountain A, Young LS, et al. High-level, beta-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue. Mol Ther. 2001;4(4):365–71. doi: 10.1006/mthe.2001.0468.CrossRefPubMedGoogle Scholar
  32. 32.
    Choi EA, Lei H, Maron DJ, Mick R, Barsoum J, et al. Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clin Cancer Res. 2004;10(4):1535–44. doi: 10.1158/1078-0432.CCR-0040-03.CrossRefPubMedGoogle Scholar
  33. 33.
    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(3):491–501. doi: 10.1016/S0092-8674(00)81590-1.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Anning Yin
    • 1
  • Yingan Jiang
    • 1
  • Xianfeng Zhang
    • 1
  • Hesheng Luo
    • 1
  1. 1.Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations