Advertisement

Medical Oncology

, Volume 27, Issue 2, pp 268–277 | Cite as

Altered iron metabolism, inflammation, transferrin receptors, and ferritin expression in non-small-cell lung cancer

  • Suzana Kukulj
  • Morana Jaganjac
  • Milivoj Boranic
  • Simun Krizanac
  • Zarko Santic
  • Marija Poljak-BlaziEmail author
Original Paper

Abstract

The involvement of iron and inflammation parameters on overall survival in non-small-cell lung cancer (NSCLC) patients was studied. Furthermore, transferrin receptors 1 (TfR1) and ferritin expression in tumor tissue, tumor stroma, and normal lung tissue were analyzed. Iron metabolism and inflammation parameters were determined by automated laboratory measurements at the time of diagnosis. TfR1 and ferritin expression were determined by immuno-histochemical methods. About 50% of patients survived 12 months only. At the time of diagnosis more than half of the patients had anemia and significantly elevated serum ferritin. Iron content of serum ferritin (ICF) was below the reference values in 90% of patients. Furthermore, ICF showed positive correlation with iron metabolic parameters and survival but negative correlation with serum ferritin and ESR. The expression of TfR1 and ferritin in tumor cells was observed in 88% or 62% of patients, respectively. Tumor stroma was TfR1 negative and sporadically ferritin positive. Tumor tissue ferritin expression showed negative correlation with serum iron and hematokrit (Ht), and positive correlation with ferritin, erythrocyte sedimentation rate (ESR), α-1 globulin, and α-2 globulin. Positive correlation was found between TfR1 expression in tumor tissue and α-globulin. The correlation between TfR1/ferritin expression in tumor tissue and ICF or survival was not observed. Therefore, we conclude that elevated serum ferritin in sera of NSCLC patients is the result of inflammation and oxidative stress rather than body iron overload. Higher expression of ferritin in tumor tissue may be the consequence of iron deficiency or local toxicity induced by environmental factors.

Keywords

Non-small-cell lung carcinoma Transferrin receptors Ferritin Body iron stores ICF Inflammation 

Notes

Acknowledgments

The study was supported by the Croatian Ministry of Science, Education, and Sport.

References

  1. 1.
    Stevens RG, Jones DY, Micozzi MS, Taylor PR. Body iron stores and the risk of cancer. N Engl J Med. 1988;319(16):1047–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinberg ED. Association of iron with respiratory tract neoplasia. J Trace Elem Exp Med. 1993;6:117–23.Google Scholar
  3. 3.
    Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS. Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int J Cancer. 1994;56(3):364–9. doi: 10.1002/ijc.2910560312.CrossRefPubMedGoogle Scholar
  4. 4.
    Knekt P, et al. Body iron stores and risk of cancer. Int J Cancer. 1994;56(3):379–82. doi: 10.1002/ijc.2910560315.CrossRefPubMedGoogle Scholar
  5. 5.
    Weinberg ED. The role of iron in cancer. Eur J Cancer Prev. 1996;5(1):19–36. doi: 10.1097/000199608469-199609001-00004.CrossRefPubMedGoogle Scholar
  6. 6.
    Lapenna D, et al. Cigarette smoke, ferritin, and lipid peroxidation. Am J Respir Crit Care Med. 1995;151(2Pt 1):431–5.PubMedGoogle Scholar
  7. 7.
    Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331(1):1–40.PubMedGoogle Scholar
  8. 8.
    Haile DJ. Regulation of genes of iron metabolism by the iron-response proteins. Am J Med Sci. 1993;318(4):230–40. doi: 10.1097/00000441-199910000-00003.CrossRefGoogle Scholar
  9. 9.
    Faulk WP, Hsi BL, Stevens PJ. Transferrin and transferrin receptors in carcinoma of the breast. Lancet. 1980;2(8191):390–2.PubMedGoogle Scholar
  10. 10.
    Habeshaw JA, Lister TA, Stansfeld AG, Greaves MF. Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma. Lancet. 1983;1(8323):498–501. doi: 10.1016/S0140-6736(83)92191-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wrba F, Ritzinger E, Reiner A, Holzner JH. Transferrin receptor (TrfR) expression in breast carcinoma and its possible relationship to prognosis. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol. 1986;410(1):69–73. doi: 10.1007/BF00710908.CrossRefPubMedGoogle Scholar
  12. 12.
    Octave JN, Schneider YJ, Hoffmann P, Trouet A, Crichton RR. Transferrin protein and iron uptake by cultured rat fibroblasts. FEBS Lett. 1979;108(1):127–30. doi: 10.1016/0014-5793(79)81193-X.CrossRefPubMedGoogle Scholar
  13. 13.
    Larrick JW, Cresswell P. Transferrin receptors on human B and T lymphoblastoid cell lines. Biochim Biophys Acta. 1979;583(4):483–90.PubMedGoogle Scholar
  14. 14.
    Larson SM, et al. Common pathway for tumor cell uptake of gallium-67 and iron-59 via a transferrin receptor. J Natl Cancer Inst. 1980;64(1):41–53.PubMedGoogle Scholar
  15. 15.
    Delia D, et al. Modulation of T leukaemic cell phenotype with phorbol ester. Int J Cancer. 1982;29(1):23–31. doi: 10.1002/ijc.2910290106.CrossRefPubMedGoogle Scholar
  16. 16.
    Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol. 1998;35(1):35–54.PubMedGoogle Scholar
  17. 17.
    Yamanishi H, Iyama S, Yamaguchi Y, Kanakura Y, Iwatani Y. Relation between iron content of serum ferritin and clinical status factors extracted by factor analysis in patients with hyperferritinemia. Clin Biochem. 2002;35(7):523–9. doi: 10.1016/S0009-9120(02)00380-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Travis WD, Colby TV, Corrin B, et al. Histological typing of lung and pleural tumours. World Health Organization International Histological Classification of Tumors, XIII. 3rd ed. Berlin/Heidelberg: Springer-Verlag; 1999.Google Scholar
  19. 19.
    Sobin LH, Wittekind CL. TNM classification of malignant tumors. 6th ed. New York: John Wiley & Sons, Inc.; 2002.Google Scholar
  20. 20.
    Whitney JF, Clark JM, Griffin TW, Gautam S, Leslie KO. Transferrin receptor expression in nonsmall cell lung cancer. Histopathologic and clinical correlates. Cancer. 1995;76(1):20–5. doi: 10.1002/1097-0142(19950701)76:1<20::AID-CNCR2820760104>3.0.CO;2-3.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang HB, et al. Adenoma-carcinoma sequence: a reappraisal with immunohistochemical expression of ferritin. J Surg Oncol. 1995;60(1):35–40. doi: 10.1002/jso.2930600108.CrossRefPubMedGoogle Scholar
  22. 22.
    Nakano M, et al. Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: a study on 2507 healthy people. Free Radic Biol Med. 2003;35(7):826–32. doi: 10.1016/S0891-5849(03)00432-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Zaniboni A, et al. Phase II study oftaxol combined with ifosfamide and carboplatin in the treatment of stage IIIb-IV non-small-cell lung cancer. Am J Clin Oncol. 2003;26(1):84–8. doi: 10.1097/00000421-200302000-00016.CrossRefPubMedGoogle Scholar
  24. 24.
    Fujimoto T, et al. Completely resected N1 non-small-cell lung cancer: factors affecting recurrence and long-term survival. J Thorac Cardivasc Surg. 2006;132(3):499–506. doi: 10.1016/j.jtcvs.2006.04.019.CrossRefGoogle Scholar
  25. 25.
    Yovino S, Kwok Y, Krasna M, Bangalore M, Suntharalingam M. An association between preoperative anemia and decreased survival in early-stage non-small-cell lung cancer patients treated with surgery alone. Int J Radiat Oncol Biol Phys. 2005;62(5):1438–43. doi: 10.1016/j.ijrobp.2004.12.038.PubMedGoogle Scholar
  26. 26.
    Berardi R, et al. Perioperative anemia and blood transfusions as prognostic factors in patients undergoing resection for non-small cell lung cancers. Lung Cancer. 2005;49(3):371–6. doi: 10.1016/j.lungcan.2005.04.011.CrossRefPubMedGoogle Scholar
  27. 27.
    Weiss G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev. 2002;16(2):87–96. doi: 10.1054/blre.2002.0193.CrossRefPubMedGoogle Scholar
  28. 28.
    Prutki M, et al. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett. 2006;238(2):188–96. doi: 10.1016/j.canlet.2005.07.001.CrossRefPubMedGoogle Scholar
  29. 29.
    Hyman GA, Harvey JE. The pathogenesis of anaemia in patients with carcinoma. Am J Med. 1955;19(3):350–6. doi: 10.1016/0002-9343(55)90123-6.CrossRefPubMedGoogle Scholar
  30. 30.
    Li R, Luo C, Mines M, Zhang J, Fan GH. CV hemocine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, alters CXCR4 signaling, and induces phosphorylation and translocation of ferritin heavy chain. J Biol Chem. 2006;281(49):37616–27. doi: 10.1074/jbc.M607266200.CrossRefPubMedGoogle Scholar
  31. 31.
    Harada T, Baba M, Torii I, Morikawa S. Ferritin selectively suppresses delayed-type hypersensitivity responses at induction or effector phase. Cell Immunol. 1987;109(1):75–88. doi: 10.1016/0008-8749(87)90293-0.CrossRefPubMedGoogle Scholar
  32. 32.
    Moroz C, et al. Treatment of human bone marrow with recombinant placenta immunomodulator ferritin results in myelopoiesis a T-cell suppression through modulation of the cytokine-chemokine networks. Exp Hematol. 2006;34(2):159–66. doi: 10.1016/j.exphem.2005.10.006.CrossRefPubMedGoogle Scholar
  33. 33.
    Dallegri F, Patrone F, Frumento G, Sacchetti C. Antibody-dependent killing of tumor cells by polymorphonuclear leukocytes. Involvement of oxidative and nonoxidative mechanisms. J Natl Cancer Inst. 1984;73(2):331–9.PubMedGoogle Scholar
  34. 34.
    Dallegri F, Frumento G, Ballestrero A, Goretti R, Patrone F. Relationship between antibody-dependent tumour cell lysis and primary granule exocytosis by human neutrophils. Clin Exp Immunol. 1987;70(2):479–83.PubMedGoogle Scholar
  35. 35.
    Valerius T, et al. Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood. 1993;82(3):931–9.PubMedGoogle Scholar
  36. 36.
    Reali E, et al. Interferon-γ enhances monoclonal antibody 17-1A-dependent neutrophil cytotoxicity toward colorectal carcinoma cell line SW11-16. Clin Immunol Immunopathol. 1994;71(1):105–12. doi: 10.1006/clin.1994.1058.CrossRefPubMedGoogle Scholar
  37. 37.
    Katano M, Torisu M. Neutrophil-mediated tumor cell destruction in cancer ascites. Cancer. 1982;50(1):62–8. doi: 10.1002/1097-0142(19820701)50:1<62::AID-CNCR2820500113>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  38. 38.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. doi: 10.1016/S0140-6736(00)04046-0.CrossRefPubMedGoogle Scholar
  39. 39.
    O’Byrne KJ, Dalgleish AG. Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer. 2001;85(4):473–83. doi: 10.1054/bjoc.2001.1943.CrossRefPubMedGoogle Scholar
  40. 40.
    Prutki M, Poljak-Blazi M, Mihaljevic B, Orescanin V, Zarkovic N. Uptake of anti-anemic substance ferric-sorbitol-citrate by normal and malignant cells and its effects on expression of transferrin receptor 1 and ferritin. Cancer Biother Radiopharm. 2006;21(6):636–44. doi: 10.1089/cbr.2006.21.636.CrossRefPubMedGoogle Scholar
  41. 41.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press; 1989. 466.Google Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Suzana Kukulj
    • 1
  • Morana Jaganjac
    • 2
  • Milivoj Boranic
    • 2
  • Simun Krizanac
    • 3
  • Zarko Santic
    • 4
  • Marija Poljak-Blazi
    • 2
    Email author
  1. 1.University Hospital for Lung Diseases “Jordanovac”ZagrebCroatia
  2. 2.Division of Molecular MedicineRudjer Boskovic InstituteZagrebCroatia
  3. 3.Department of PathologyClinical Hospital DubravaZagrebCroatia
  4. 4.Clinic of Internal MedicineMostar University School of MedicineMostarBosnia and Herzegovina

Personalised recommendations