Medical Oncology

, Volume 26, Issue 2, pp 202–209 | Cite as

Effect of temsirolimus versus interferon-α on outcome of patients with advanced renal cell carcinoma of different tumor histologies

  • Janice P. Dutcher
  • Paul de Souza
  • David McDermott
  • Robert A. Figlin
  • Anna Berkenblit
  • Alexandra Thiele
  • Mizue Krygowski
  • Andrew Strahs
  • Jay Feingold
  • Gary Hudes
Original Paper


Purpose Exploratory subgroup analyses from the phase 3 global advanced renal cell carcinoma (ARCC) trial were conducted to assess the influence of tumor histology on outcome of patients treated with temsirolimus (Torisel™) or interferon-α (IFN). Patients and methods Patients with ARCC including clear cell and other types such as papillary and chromophobe histologies received either IFN (3 million units [MU] subcutaneously three times weekly, escalating to 18 MU) or temsirolimus (25 mg intravenously weekly). Results Approximately 80% of patients had clear cell and 20% of patients had other histologies, the majority of which were papillary. Patients with clear cell and other RCC histologies, treated with temsirolimus, demonstrated comparable median overall and progression-free survival. In contrast, patients with other RCC histologies, treated with IFN, demonstrated shorter median overall and progression-free survival than patients with clear cell RCC. Hazard ratios for death for treatment with temsirolimus versus IFN were less than 1 for patients regardless of tumor histology. For patients treated with temsirolimus, 59% with clear cell and 68% with other RCC histologies experienced tumor reductions. For patients treated with IFN, 35% with clear cell and 14% with other RCC histologies had tumor reductions. However, temsirolimus did not appear to improve the objective response rate compared to IFN. Temsirolimus resulted in a superior clinical benefit rate compared with IFN, regardless of tumor histology. Conclusion Temsirolimus appears to be efficacious in patients with clear cell and non-clear cell histologies and can, therefore, be used for the treatment of all types of RCC.


Temsirolimus Interferon-α Renal cell carcinoma Tumor histology 



This work was supported by research funding from Wyeth Research, Collegeville, PA. We thank the patients, their families, and the clinical personnel who participated in this study. We also thank Tricia Gooljarsingh, PhD for assistance with manuscript preparation.


  1. 1.
    Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353(23):2477–90. doi: 10.1056/NEJMra043172.PubMedCrossRefGoogle Scholar
  2. 2.
    Kovacs G, et al. The Heidelberg classification of renal cell tumors. J Pathol. 1997;183(2):131–3. doi: 10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol. 2003;27(5):612–24. doi: 10.1097/00000478-200305000-00005.PubMedCrossRefGoogle Scholar
  4. 4.
    Patard JJ, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol. 2005;23(12):2763–71. doi: 10.1200/JCO.2005.07.055.PubMedCrossRefGoogle Scholar
  5. 5.
    Margulis V, Tamboli P, Matin SF, Swanson DA, Wood CG. Analysis of clinicopathologic predictors of oncologic outcome provides insight into the natural history of surgically managed papillary renal cell carcinoma. Cancer. 2008;112(7):1480–8. doi: 10.1002/cncr.23322.PubMedCrossRefGoogle Scholar
  6. 6.
    Motzer RJ, et al. Treatment outcome and survival associated with metastatic renal cell carcinoma of non-clear-cell histology. J Clin Oncol. 2002;20(9):2376–81. doi: 10.1200/JCO.2002.11.123.PubMedCrossRefGoogle Scholar
  7. 7.
    Negrier S, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. N Engl J Med. 1998;338(18):1272–8. doi: 10.1056/NEJM199804303381805.PubMedCrossRefGoogle Scholar
  8. 8.
    Fyfe G. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.PubMedGoogle Scholar
  9. 9.
    McDermott DF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23(1):133–41. doi: 10.1200/JCO.2005.03.206.PubMedCrossRefGoogle Scholar
  10. 10.
    Motzer RJ, et al. Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol. 2000;18(16):2972–80.PubMedGoogle Scholar
  11. 11.
    Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20(1):289–96. doi: 10.1200/JCO.20.1.289.PubMedCrossRefGoogle Scholar
  12. 12.
    Négrier S, et al. Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: a report from the Groupe Français d’Immunothérapie. Ann Oncol. 2002;13(9):1460–8. doi: 10.1093/annonc/mdf257.PubMedCrossRefGoogle Scholar
  13. 13.
    Mekhail TM, et al. Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J Clin Oncol. 2005;23(4):832–41. doi: 10.1200/JCO.2005.05.179.PubMedCrossRefGoogle Scholar
  14. 14.
    Hermann E, et al. Treatment of metastatic papillary renal cell carcinoma with immunochemotherapy with interleukin-2, interferon-alpha and 5-fluorouracil. J. Clin Oncol 2007; 25:18S (abstract 15644).Google Scholar
  15. 15.
    Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003;9(13):4641–52.PubMedGoogle Scholar
  16. 16.
    Escudier B, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34. doi: 10.1056/NEJMoa060655.PubMedCrossRefGoogle Scholar
  17. 17.
    Motzer RJ, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. doi: 10.1056/NEJMoa065044.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103(2):253–62. doi: 10.1016/S0092-8674(00)00117-3.PubMedCrossRefGoogle Scholar
  19. 19.
    Fingar DC, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004;24(1):200–16. doi: 10.1128/MCB.24.1.200-216.2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Skotnicki JS, et al. Design, synthesis and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779. Clin Cancer Res. 2001;374(7S):3749S–50S.Google Scholar
  21. 21.
    Harding MW. Immunophilins, mTOR, and pharmacodynamic strategies for a targeted cancer therapy. Clin Cancer Res. 2003;9(8):2882–6.PubMedGoogle Scholar
  22. 22.
    Hudes G, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. doi: 10.1056/NEJMoa066838.PubMedCrossRefGoogle Scholar
  23. 23.
    Plimack ER, et al. Sunitinib in non-clear cell renal cell carcinoma (ncc-RCC): a phase II study. J Clin Oncol 2008; 26 (abstract 5112).Google Scholar
  24. 24.
    Zhuang Z, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20(1):66–9. doi: 10.1038/1727.PubMedCrossRefGoogle Scholar
  25. 25.
    Fischer J, et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumors. Oncogene. 1998;17(6):733–9. doi: 10.1038/sj.onc.1201983.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Janice P. Dutcher
    • 1
  • Paul de Souza
    • 2
  • David McDermott
    • 3
  • Robert A. Figlin
    • 4
  • Anna Berkenblit
    • 5
  • Alexandra Thiele
    • 5
  • Mizue Krygowski
    • 5
  • Andrew Strahs
    • 5
  • Jay Feingold
    • 5
  • Gary Hudes
    • 6
  1. 1.Montefiore Medical Center-North Division/New York Medical CollegeBronxUSA
  2. 2.Department of Medical OncologySt. George HospitalKogarahAustralia
  3. 3.Department of OncologyBeth Israel Deaconess Medical CenterBostonUSA
  4. 4.Division of Medical Oncology and Experimental TherapeuticsCity of Hope Comprehensive Cancer CenterDuarteUSA
  5. 5.Wyeth ResearchCambridgeUSA
  6. 6.Department of Medical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations