Medical Oncology

, Volume 26, Supplement 1, pp 23–31 | Cite as

IL-2 in the therapy of melanoma and other malignancies

Original Paper


IL-2 as a single agent has been approved for use in both renal cancer and melanoma, and it has achieved widespread use in these malignancies for selected patients with metastatic disease. For these diseases, a role for IL-2-based therapy in the adjuvant setting has not been demonstrated, and current investigations involve the use of less toxic and less complex therapies. The activity of IL-2 has been studied extensively in other malignancies, particularly hematologic diseases such as leukemia and lymphoma. To date, IL-2 used either as a single agent or as a component of regimens containing one or more additional agents for diseases other than melanoma or renal cancer has shown promise, but the rapid emergence of safer agents for these and many other malignancies has tempered enthusiasm for IL-2-based regimens. Many investigations have been directed at enhancing the therapeutic ratio of IL-2, mostly by adding chemical modulators of downstream molecules associated with IL-2 toxicity. Other approaches, including variations on the chemical composition of IL-2 to alter its receptor-binding characteristics or its pharmacokinetic profile have been tried with limited success. The addition of targeting molecules co-administered with IL-2 or covalently bound to produce bispecific IL-2 containing molecules have shown promising activity and remain under investigation.


Interleukin-2 Melanoma T cell Hematologic malignancies Toxicity modulation 


  1. 1.
    Rosenberg SA. Immunotherapy of cancer by systematic administration of lymphoid cells plus interleukin-2. J Biol Response Mod. 1984;3:501–11.PubMedGoogle Scholar
  2. 2.
    Lotze MT, Frana LW, Sharrow SO, Robb RJ, Rosenberg SA. In vivo administration of purified human interleukin 2. I. Half-life and immunologic effects of the Jurkat cell line-derived interleukin 2. J Immunol. 1985;134:157–66.PubMedGoogle Scholar
  3. 3.
    Lotze MT, Matory YL, Ettinghausen SE, et al. In vivo with recombinant IL 2. J Immunol. 1985;135:2865–75.PubMedGoogle Scholar
  4. 4.
    Rosenberg SA, Lotzez MT, Yang JC, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst. 1993;85:622–32. doi:10.1093/jnci/85.8.622.PubMedCrossRefGoogle Scholar
  5. 5.
    Law TM, Motzer RJ, Mazumdar M, et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer. 1995;76:827. doi:10.1002/1097-0142(19950901)76:5<824::AID-CNCR2820760517>3.0.CO;2-N.CrossRefGoogle Scholar
  6. 6.
    Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg. 1989;210:474–84. discussion 484–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Atkins MB, Lotze MT, Dutcher JP, et al. Margolin Seminars in Oncology 2002 IL-2 in RCC high-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.PubMedGoogle Scholar
  8. 8.
    Rosenberg SA, Packard BS, Aebersold PM, et al. Special report: use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New Engl J Med. 1988;319:1676–80.PubMedGoogle Scholar
  9. 9.
    Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1980;223:1318–21.Google Scholar
  10. 10.
    Spiess PJ, Yang JC, Rosenberg SA. In vivo antitumor activity or tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. JNCI. 1987;79:1067–75.PubMedGoogle Scholar
  11. 11.
    Ahmadzadeh M, Rosenberg SA. Il-2 administration increases CD4 + CD25hi Foxp3 = regulatory T cells in cancer patients. Blood. 2006;107:2409–14. doi:10.1182/blood-2005-06-2399.PubMedCrossRefGoogle Scholar
  12. 12.
    Panelli MC, Wang E, Monsurro V, Jin P, et al. Overview of melanoma vaccines and promising approaches. Curr Oncol Rep. 2004;6:414–20. doi:10.1007/s11912-004-0069-3.PubMedCrossRefGoogle Scholar
  13. 13.
    Sosman JA, Carrillo C, Urba WJ, Flaherty L, et al. Three phase II cytokine working group trials of gp100 (210 M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advance melanoma. J Clin Oncol. 2008;26:2292–8. doi:10.1200/JCO.2007.13.3165.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith FO, Downey SG, Klapper JA, et al. Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res. 2008;14:5610–8. doi:10.1158/1078-0432.CCR-08-0116.PubMedCrossRefGoogle Scholar
  15. 15.
    Dudley ME, Wunderlich JR, Yang JC, Sherry RM, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastic melanoma. J Clin Oncol. 2005;23:2346–57. doi:10.1200/JCO.2005.00.240.PubMedCrossRefGoogle Scholar
  16. 16.
    Letsch A, Keilholz U, Schadendorf D, Nagorsen D, et al. High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma. Int J Cancer. 2000;78:699–706.Google Scholar
  17. 17.
    Spitler LE, Grossbard ML, Ernstoff MS, Silver G, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 2000;18:1614–21.PubMedGoogle Scholar
  18. 18.
    Hunder NN, Wallen H, Cao J, Hendricks DW, et al. Treatment of metastic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med. 2008;358:2698–703. doi:10.1056/NEJMoa0800251.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Cancer. 2008;3:299–308.Google Scholar
  20. 20.
    Atkins MB, Hsu J, Lee S, et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the eastern cooperative oncology group. J Clin Oncol. 2008;26:5748−54.Google Scholar
  21. 21.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. JEM. 2005;202:907–12. doi:10.1084/jem.20050732.CrossRefGoogle Scholar
  22. 22.
    Gambacorti-Passerini C, Rivoltini L, Supino R, Rodolfo M, et al. Susceptibility of chemoresistant murine and human tumor cells to lysis by interleukin 2-activated lymphocytes. Cancer Res. 1988;48:2372–6.PubMedGoogle Scholar
  23. 23.
    Lauria F, Raspadori D, Rondelli D, Ventura MA, et al. In vitro susceptibility of acute leukemia cells to the cytotoxic activity of allogeneic and autologous lymphokine activated killer (LAK) effectors: correlation with the rate and duration of complete remission and with survival. Leukemia. 1994;8:724–8.PubMedGoogle Scholar
  24. 24.
    Margolin KA, Wright C, Forman SJ. Autologous bone marrow purging by in situ IL-2 activation of endogenous killer cells. Leukemia. 1997;9:723–8. doi:10.1038/sj.leu.2400646.CrossRefGoogle Scholar
  25. 25.
    Meloni G, Vignetti M, Andrizzi C, et al. Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma. 1996;5–6:429–35. doi:10.3109/10428199609093440.CrossRefGoogle Scholar
  26. 26.
    Maraninchi D, Blaise D, Viens P, Brandely M, et al. High-dose recombinant interleukin-2 and acute myeloid leukemias in relapse. Blood. 1991;78:2181–7.Google Scholar
  27. 27.
    Allison MK, Jones SE, McGuffey P. Phase II trial of outpatient interleukin-2 in malignant lymphoma, chronic lymphocytic leukemia, and selected solid tumors. J Clin Oncol. 1989;7:75–80.PubMedGoogle Scholar
  28. 28.
    Weber JS, Yang JC, Topalian SL, Schwartzentruber DJ, et al. The use of interleukin-2 and lymphokine-activated killer cells for the treatment of patients with non-Hodgkin’s lymphoma. J Clin Oncol. 1992;10:33–40.PubMedGoogle Scholar
  29. 29.
    Margolin KA, Aronson FR, Sznol M, Atkins MB, et al. Phase II trial of high-dose interleukin-2 and lymphokine-activated killer cells in Hodgkin’s disease and non-Hodgkin’s lymphoma. J Immunother. 1991;10:214–20. doi:10.1097/00002371-199106000-00008.PubMedCrossRefGoogle Scholar
  30. 30.
    Gisselbrecht C, Maranichi D, Pico JL, Milpied N, et al. Interleukin-2 treatment in lymphoma: a phase II multicenter study. Blood. 1994;83:2081–5.PubMedGoogle Scholar
  31. 31.
    Margolin KA, Besien KV, Wright C, Niland J, et al. Interleukin-2-activated autologous bone marrow and peripheral blood stem cells in the treatment of acute leukemia and lymphoma. Biol Blood Marrow Transplant. 1999;5:36–45. doi:10.1053/bbmt.1999.v5.pm10232739.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Besien K, Mehra R, Wadehra N, et al. Phase II study of autologous transplantation with interleukin-2-incubated peripheral blood stem cells and posttransplantation interleukin-2 in relapsed or refractory non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2004;10:386–94. doi:10.1016/j.bbmt.2004.01.004.PubMedCrossRefGoogle Scholar
  33. 33.
    Khan KD, Emmanouildes C, Benson DM, Hurst D. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin’s lymphoma. Clin Cancer Res. 2006;12:7046–53. doi:10.1158/1078-0432.CCR-06-1571.PubMedCrossRefGoogle Scholar
  34. 34.
    Benyunes M, Huguchi C, York A, et al. Immunotherapy with interleukin-2 with or without lymphokine-activated killer cells after autologous bone marrow transplantation for malignant lymphomas: a feasibility trial. Bone Marrow Transplant. 1997;16:435–42.Google Scholar
  35. 35.
    Nagler A, Ackerstein A, Or R, Naparstek E, Slavin S. Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alfa in lymphoma patients postautologous marrow or stem cell transplantation. Blood. 1997;89:3951–9.PubMedGoogle Scholar
  36. 36.
    Burns L, Weisdorf D, DeFor T, et al. IL-2 based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 2003;32:177–86. doi:10.1038/sj.bmt.1704086.PubMedCrossRefGoogle Scholar
  37. 37.
    Stein AS, O’Donnell MR, Slovak ML, et al. Interleukin-2 after autologous stem-cell transplantation for adult patients with acute myeloid leukemia in first complete remission. J Clin Oncol. 2003;21:615–23. doi:10.1200/JCO.2003.12.125.PubMedCrossRefGoogle Scholar
  38. 38.
    Blaise D, Attal M, Reiffers J, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw. 2000;11:91–8.PubMedGoogle Scholar
  39. 39.
    Thompson JA, Fisher RI, LeBlanc M, Forman SJ. Total body irradiation, etoposide, cyclophosphamide, and autologous peripheral blood stem-cell transplantation followed by randomization to therapy with interleukin-2 versus observation for patients with non- Hodgkin lymphoma: results of a phase 3 randomized trial by the Southwest Oncology Group (SWOG9438). Blood. 2008;111:4048–51. doi:10.1182/blood-2007-09-111708.PubMedCrossRefGoogle Scholar
  40. 40.
    Panelli MC, Wang E, Phan G, Puhlmann M, et al. Gene-expression profiling of the response of the peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol. 2002;3:1–7. doi:10.1186/gb-2002-3-7-research0035.CrossRefGoogle Scholar
  41. 41.
    Panelli MC, White R, Foster M, Martin B, et al. Forecasting the cytokine storm following systemic interleukin (IL) -2 administration. J Transl Med. 2004;2:17. doi:10.1186/1479-5876-2-17.PubMedCrossRefGoogle Scholar
  42. 42.
    Margolin KM, Atkins M, Sparano J, et al. Prospective randomized trial of lisofylline for the prevention of toxicities of high-dose interleukin 2 therapy in advanced renal cancer and malignant melanoma. Clin Cancer Res. 1997;3:565–72.PubMedGoogle Scholar
  43. 43.
    Atkins MB, Redman B, Mier J, et al. A phase I study of CNI-1493, an inhibitor of cytokine release, in combination with high-dose interleukin-2 in patients with renal cancer and melanoma. Clin Cancer Res. 2001;7:486–92.PubMedGoogle Scholar
  44. 44.
    McDermott DF, Trehu EG, Mier JW, et al. A two-part phase I trial of high-dose interleukin 2 in combination with soluble (Chinese hamster ovary) interleukin 1 receptor. Clin Cancer Res. 1998;5:1203–13.Google Scholar
  45. 45.
    Du Bois JS, Trehu EG, Mier JW, et al. Randomized placebo-controlled clinical trial of high-dose interleukin-2 in combination with a soluble p75 tumor necrosis factor receptor immunoglobulin G chimera in patients with advanced melanoma and renal cell carcinoma. J Clin Oncol. 1997;15:1052–62.PubMedGoogle Scholar
  46. 46.
    Margolin K, Atkins MB, Dutcher JP, Ernstoff MS, et al. Phase I trial of BAY 50-4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin Cancer Res. 2007;13:3312–9. doi:10.1158/1078-0432.CCR-06-1341.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyers FJ, Paradise C, Scudder SA, et al. A phase I study including pharmacokinetics of polyethylene glycol conjugated interleukin-2. Clin Pharmacol Ther. 1991;49:307–13.PubMedGoogle Scholar
  48. 48.
    Yao Z, Dai W, Perry J, et al. Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunol Immunother. 2003;53:404–10. doi:10.1007/s00262-003-0454-z.PubMedCrossRefGoogle Scholar
  49. 49.
    King DM, Albertini MR, Schalch H, et al. Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol. 2004;22:4463–73. doi:10.1200/JCO.2004.11.035.PubMedCrossRefGoogle Scholar
  50. 50.
    Sosman JA, Weiss GR, Margolin KA, et al. Phase IB clinical trial of anti-CD3 followed by high-dose bolus interleukin-2 in patients with metastatic melanoma and advanced renal cell carcinoma: clinical and immunologic effects. J Clin Oncol. 1993;11:1496–505.PubMedGoogle Scholar
  51. 51.
    Eklund JW, Kuzel TM. A review of recent findings involving interleukin-2-based cancer therapy. Curr Opin Oncol. 2004;16:542–6. doi:10.1097/01.cco.0000142070.45097.68.PubMedCrossRefGoogle Scholar
  52. 52.
    Maker AV, Phan GQ, Attia P, Yang JC, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol. 2005;12:1005–16. doi:10.1245/ASO.2005.03.536.PubMedCrossRefGoogle Scholar
  53. 53.
    Hipp MM, Hilf N, Walter S, Werth D, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood. 2008;111:5610–20. doi:10.1182/blood-2007-02-075945.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA

Personalised recommendations