Medical Oncology

, 26:437 | Cite as

Translational research in complex etiopathogenesis and therapy of hematological malignancies: the specific role of tyrosine kinases signaling and inhibition

  • Karmen Stankov
  • Sunčica Stankov
  • Stevan Popović
Original Paper


During the recent genomics and proteomics era, high-resolution, genome-wide approaches have revealed numerous promising new drug targets and disease biomarkers, accelerating and emphasizing the need for targeted molecular therapy compounds. Significant progress has been made in understanding the pathogenesis of hematological malignancies there by, revealing new drug targets. Introduction of multiple new technologies in cancer research have significantly improved the drug discovery process, leading to key success in targeted cancer therapeutics, including tyrosine kinase inhibitors. The studies of receptor tyrosine kinases and their role in malignant transformation are already translated from the preclinical level (cell-based and animal models) to clinical studies, enabling the more complete understanding of tumor cell biology and improvement of tumor therapy.


Leukemia Receptor protein–tyrosine kinases Protein kinase inhibitors 



This work was supported by the bilateral project of cooperation between the Ministry of Science, Republic of Serbia and CNRS, France, grant No. 451-03-2405/2007-02/12-1.


  1. 1.
    Landry Y, Gies JP. Drugs and their molecular targets: an updated overview. Fundam Clin Pharmacol. 2008;22:1–18. doi: 10.1111/j.1472-8206.2007.00548.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Hughes T, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37. doi: 10.1182/blood-2006-01-0092.CrossRefPubMedGoogle Scholar
  3. 3.
    Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Rev Cancer. 2008;8:473–80. doi: 10.1038/nrc2394.CrossRefGoogle Scholar
  4. 4.
    Thomas RK, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51. doi: 10.1038/ng1975.CrossRefPubMedGoogle Scholar
  5. 5.
    Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new waveof BCR–ABL inhibitors. Nat Rev Drug Discov. 2007;6:834–48. doi: 10.1038/nrd2324.CrossRefPubMedGoogle Scholar
  6. 6.
    Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370:342–50. doi: 10.1016/S0140-6736(07)61165-9.CrossRefPubMedGoogle Scholar
  7. 7.
    Wernig G, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20. doi: 10.1016/j.ccr.2008.02.009.CrossRefPubMedGoogle Scholar
  8. 8.
    Geron I, et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell. 2008;13:321–30. doi: 10.1016/j.ccr.2008.02.017.CrossRefPubMedGoogle Scholar
  9. 9.
    Neviani P, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117:2408–21. doi: 10.1172/JCI31095.CrossRefPubMedGoogle Scholar
  10. 10.
    Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9. doi: 10.1124/jpet.105.084145.CrossRefPubMedGoogle Scholar
  11. 11.
    Apperley JF. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet. 2007;8:1018–29. doi: 10.1016/S1470-2045(07)70342-X.CrossRefGoogle Scholar
  12. 12.
    Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332–44. doi: 10.1038/nrc2106.CrossRefPubMedGoogle Scholar
  13. 13.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009.CrossRefPubMedGoogle Scholar
  14. 14.
    Fabbro D, Parkinson D, Matter A. Protein tyrosine kinase inhibitors: new treatment modalities? Curr Opin Pharmacol. 2002;2:374–81. doi: 10.1016/S1471-4892(02)00179-0.CrossRefPubMedGoogle Scholar
  15. 15.
    Levitzki A, Mishani E. Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem. 2006;75:93–109. doi: 10.1146/annurev.biochem.75.103004.142657.CrossRefPubMedGoogle Scholar
  16. 16.
    Meyer J, et al. Remarkable leukemogenic potency and quality of a constitutively active neurotrophin receptor, DTrkA. Leukemia. 2007;21:2171–80. doi: 10.1038/sj.leu.2404882.CrossRefPubMedGoogle Scholar
  17. 17.
    Doepfner KT, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol. 2007;63:215–30. doi: 10.1016/j.critrevonc.2007.05.005.CrossRefPubMedGoogle Scholar
  18. 18.
    Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem. 2007;14:2009–23. doi: 10.2174/092986707781368423.CrossRefPubMedGoogle Scholar
  19. 19.
    Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A. Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia. 2008; doi: 10.1038/leu.2008.243.
  20. 20.
    Matsumura I, Mizuki M, Kanakura Y. Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies. Cancer Sci. 2008;99:479–85. doi: 10.1111/j.1349-7006.2007.00717.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp (816) mutant c-kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood. 2001;97:3559–67. doi: 10.1182/blood.V97.11.3559.CrossRefPubMedGoogle Scholar
  22. 22.
    Blagosklony M. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene. 2004;23:2967–75. doi: 10.1038/sj.onc.1207520.CrossRefGoogle Scholar
  23. 23.
    Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7:345–56. doi: 10.1038/nrc2126.CrossRefPubMedGoogle Scholar
  24. 24.
    Chow LQM, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884–96. doi: 10.1200/JCO.2006.06.3602.CrossRefPubMedGoogle Scholar
  25. 25.
    O’Farrell AM, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101:3597–605. doi: 10.1182/blood-2002-07-2307.CrossRefPubMedGoogle Scholar
  26. 26.
    Schittenhelm MM, et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 2006;66:473–81. doi: 10.1158/0008-5472.CAN-05-2050.CrossRefPubMedGoogle Scholar
  27. 27.
    Quintas-Cardama A, Cortes J. Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL, KIT and PDGFR kinases. Future Oncol. 2008;4:611–21. doi: 10.2217/14796694.4.5.611.CrossRefPubMedGoogle Scholar
  28. 28.
    White DL, Saunders VA, Quinn SR, Manley PW, Hughes TP. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood. 2007;109:3609–10. doi: 10.1182/blood-2006-11-058032.CrossRefPubMedGoogle Scholar
  29. 29.
    Hu S, et al. Comparison of antitumor effects on multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Cancer Ther. 2008;7:1110–20. doi: 10.1158/1535-7163.MCT-07-2218.CrossRefGoogle Scholar
  30. 30.
    Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006;108:3494–503. doi: 10.1182/blood-2006-04-015487.CrossRefPubMedGoogle Scholar
  31. 31.
    Milojkovic D, Apperley J. State-of-the-art in the treatment of chronic myeloid leukaemia. Curr Opin Oncol. 2008;20:112–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Hochhaus A, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–6. doi: 10.1038/leu.2008.84.CrossRefPubMedGoogle Scholar
  33. 33.
    Apperley JF. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet. 2007;8:1116–28. doi: 10.1016/S1470-2045(07)70379-0.CrossRefGoogle Scholar
  34. 34.
    Cao X, Tanis KQ, Koleske AJ, Colicelli J. Enhancement of ABL kinase catalytic efficiency by a direct binding regulator is independent of other regulatory mechanisms. J Biol Chem. 2008;283:31401–7. doi: 10.1074/jbc.M804002200.CrossRefPubMedGoogle Scholar
  35. 35.
    Azam M, et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc Natl Acad Sci USA. 2006;103:9244–9. doi: 10.1073/pnas.0600001103.CrossRefPubMedGoogle Scholar
  36. 36.
    Widmer N, et al. Relationship of imatinib-free plasma levels and target phenotype with efficacy and tolerability. Br J Cancer. 2008;98:1633–40. doi: 10.1038/sj.bjc.6604355.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang L, et al. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther. 2008;83:258–64. doi: 10.1038/sj.clpt.6100268.CrossRefPubMedGoogle Scholar
  38. 38.
    Larson RA, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111:4022–8. doi: 10.1182/blood-2007-10-116475.CrossRefPubMedGoogle Scholar
  39. 39.
    Reilly J. Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev. 2003;17:241–8. doi: 10.1016/S0268-960X(03)00024-9.CrossRefPubMedGoogle Scholar
  40. 40.
    Corell PH, Paulson RF, Wei X. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Gene. 2006;374:26–38. doi: 10.1016/j.gene.2006.01.023.CrossRefGoogle Scholar
  41. 41.
    Gilliland DG. Hematologic malignancies. Curr Opin Hematol. 2001;8:189–91. doi: 10.1097/00062752-200107000-00001.CrossRefPubMedGoogle Scholar
  42. 42.
    Kosmider O, et al. Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice. Cancer Cell. 2005;8:467–78. doi: 10.1016/j.ccr.2005.11.009.CrossRefPubMedGoogle Scholar
  43. 43.
    Renneville A, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22:915–31. doi: 10.1038/leu.2008.19.CrossRefPubMedGoogle Scholar
  44. 44.
    Patnaik MM, Tefferi A, Pardanani A. Kit: molecule of interest for the diagnosis and treatment of mastocytosis and other neoplastic disorders. Curr Cancer Drug Targets. 2007;7:492–503. doi: 10.2174/156800907781386614.CrossRefPubMedGoogle Scholar
  45. 45.
    Kindler T, et al. Sustained complete hematologic remission after administration of the tyrosine kinase inhibitor imatinib mesylate in a patient with refractory, secondary AML. Blood. 2003;101:2960–2. doi: 10.1182/blood-2002-05-1469.CrossRefPubMedGoogle Scholar
  46. 46.
    Smolich BD, et al. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood. 2001;97:1413–21. doi: 10.1182/blood.V97.5.1413.CrossRefPubMedGoogle Scholar
  47. 47.
    Mollgard L, et al. The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol. 2008;62:439–48. doi: 10.1007/s00280-007-0623-4.CrossRefPubMedGoogle Scholar
  48. 48.
    Tuveson DA, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20:5054–8. doi: 10.1038/sj.onc.1204704.CrossRefPubMedGoogle Scholar
  49. 49.
    Apperley JF, et al. Response to imatinib mesylate in patients with chronic myeloproliferative disorders with rearrangement of the platelet-derived growth factor receptor beta. N Engl J Med. 2002;347:481–7. doi: 10.1056/NEJMoa020150.CrossRefPubMedGoogle Scholar
  50. 50.
    De J, Zanjani R, Hibbard M, Davis BH. Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia. Am J Clin Pathol. 2007;128:550–7. doi: 10.1309/JVALJNL4ELQMD536.CrossRefPubMedGoogle Scholar
  51. 51.
    Fernandez A, et al. Rational drug redesign to overcome drug resistance in cancer therapy: Imatinib moving target. Cancer Res. 2007;67:4028–33. doi: 10.1158/0008-5472.CAN-07-0345.CrossRefPubMedGoogle Scholar
  52. 52.
    Levis M, et al. A FLT3- targeted tyrosine kinase inhibitor is cytotoxic to leukaemia cells in vitro and in vivo. Blood. 2002;99:3885–91. doi: 10.1182/blood.V99.11.3885.CrossRefPubMedGoogle Scholar
  53. 53.
    Levis M, Brown P, Smith BD. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108:3477–83. doi: 10.1182/blood-2006-04-015743.CrossRefPubMedGoogle Scholar
  54. 54.
    Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene. 2003;22:7389–95. doi: 10.1038/sj.onc.1206942.CrossRefPubMedGoogle Scholar
  55. 55.
    Lin P, et al. Acute myeloid leukemia harboring t(8;21)(q22;q22): a heterogeneous disease with poor outcome in a subset of patients unrelated to secondary cytogenetic aberrations. Mod Pathol. 2008;21:1029–36. doi: 10.1038/modpathol.2008.92.CrossRefPubMedGoogle Scholar
  56. 56.
    Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci USA. 2005;102:9714–19. doi: 10.1073/pnas.0501870102.CrossRefPubMedGoogle Scholar
  57. 57.
    Levi F, Lucchini F, Negri E, Barbui T, La Vecchia C. Trends in mortality from leukemia in subsequent age groups. Leukemia. 2000;14:1980–5. doi: 10.1038/sj.leu.2401915.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Karmen Stankov
    • 1
    • 2
  • Sunčica Stankov
    • 3
  • Stevan Popović
    • 4
  1. 1.Department of Biochemistry, Medical facultyUniversity of Novi SadNovi SadSerbia
  2. 2.CEA/Institut de Génomique Centre National de GénotypageEvry CedexFrance
  3. 3.Health Center Novi SadNovi SadSerbia
  4. 4.Hematology Clinics, Medical facultyUniversity of Novi SadNovi SadSerbia

Personalised recommendations