Advertisement

Medical Oncology

, 26:322 | Cite as

PIK3CA mutation occurs in nasopharyngeal carcinoma but does not significantly influence the disease-specific survival

  • Chu-Chung Chou
  • Ming-Jen Chou
  • Chin-Yuan TzenEmail author
Original Paper

Abstract

This study was aimed to test whether PIK3CA, BRAF and RAS are mutated in nasopharyngeal carcinomas (NPCs) and, if so, to further determine whether such mutations affect patients’ survival. For this purpose, a total of 73 NPCs were subjected to mutational analyses for PIK3CA (exons 4, 7, 9, and 20), BRAF (codon 600), and RAS (codons 12, 13 and 61). Clinicopathological characteristics were correlated to the mutation data. Survival rates were compared with the log-rank test. The result showed that the mutation rate of PIK3CA in NPC (n = 73) was 9.6%, whereas both BRAF (n = 65) and RAS (n = 45) were wild type in every specimen with adequate DNA for analysis. PIK3CA mutation was slightly influenced by sex (P = 0.0418, Fisher’s exact test), but had no significant relationship to other clinicopathological characteristics. Disease-specific survival was not significantly affected by PIK3CA mutations (P = 0.8825, log-rank test), albeit it was slightly better in younger patients (≤35 vs. >35 years of age) (P = 0.0477). These findings show that mutated PI3K may be involved in the NPC tumorigenesis but does not affect patient’s prognosis, suggesting that PI3K is a potential target in NPC for targeted therapeutics using specific kinase inhibitors.

Keywords

Nasopharyngeal carcinoma Mutation analysis PIK3CA Disease-specific survival 

Notes

Acknowledgments

This work was supported in part by NSC 95-2320-B-195-001 from National Science Council, Taiwan, and MMH-E-96002 from Mackay Memorial Hospital, Taipei, Taiwan.

References

  1. 1.
    Liebowitz D. Nasopharyngeal carcinoma: the Epstein–Barr virus association. Semin Oncol. 1994;21:376–81.PubMedGoogle Scholar
  2. 2.
    Hirayama T. Descriptive and analytical epidemiology of nasopharyngeal cancer. IARC Sci Publ. 1978;20:167–89.PubMedGoogle Scholar
  3. 3.
    Parkin DM, Muir CS. Cancer incidence in five continents. Comparability and quality of data. IARC Sci Publ. 1992;120:45–173.PubMedGoogle Scholar
  4. 4.
    Lee AW, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976–1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys. 1992;23:261–70.PubMedGoogle Scholar
  5. 5.
    Sham JS, Choy D, Choi PH. Nasopharyngeal carcinoma: the significance of neck node involvement in relation to the pattern of distant failure. Br J Radiol. 1990;63:108–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang SC, Lui LT, Lynn TC. Nasopharyngeal cancer: study III. A review of 1206 patients treated with combined modalities. Int J Radiat Oncol Biol Phys. 1985;11:1789–93.PubMedGoogle Scholar
  7. 7.
    Lee AW, et al. Retrospective analysis of patients with nasopharyngeal carcinoma treated during 1976–1985: survival after local recurrence. Int J Radiat Oncol Biol Phys. 1993;26:773–82.PubMedGoogle Scholar
  8. 8.
    Sham JS, Choy D. Prognostic factors of nasopharyngeal carcinoma: a review of 759 patients. Br J Radiol. 1990;63:51–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Samuels Y, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554. doi: 10.1126/science.1096502.PubMedCrossRefGoogle Scholar
  10. 10.
    Saal LH, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554–9. doi: 10.1158/0008-5472-CAN-04-3913.PubMedCrossRefGoogle Scholar
  11. 11.
    Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta. 1998;1436:127–50.PubMedGoogle Scholar
  12. 12.
    Kumar V, Cotran RS, Robbins SL. Neoplasia. In: Kumar V, Cotran RS, Robbins SL, editors. Robbins basic pathology. 7th ed. Philadelphia: Saunders Press; 2003. p. 180.Google Scholar
  13. 13.
    Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54. doi: 10.1038/nature00766.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim KH, Kang DW, Kim SH, Seong IO, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J. 2000;45:818–21.Google Scholar
  15. 15.
    Namba H, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7. doi: 10.1210/jc.2003-030305.PubMedCrossRefGoogle Scholar
  16. 16.
    Rajagopalan H, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934. doi: 10.1038/418934a.PubMedCrossRefGoogle Scholar
  17. 17.
    Li SY, Rong MN, Grieu F, Iacopetta B. PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res Treat. 2006;96:91–5. doi: 10.1007/s10549-005-9048-0.PubMedCrossRefGoogle Scholar
  18. 18.
    Broderick DK, et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 2004;64:5048–50. doi: 10.1158/0008-5472.CAN-04-1170.PubMedCrossRefGoogle Scholar
  19. 19.
    Li VS, et al. Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer. 2005;5:29. doi: 10.1186/1471-2407-5-29.PubMedCrossRefGoogle Scholar
  20. 20.
    Qiu W, et al. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:1441–6. doi: 10.1158/1078-0432.CCR-05-2173.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Y, Helland A, Holm R, Kristensen GB, Borresen-Dale AL. PIK3CA mutations in advanced ovarian carcinoma. Hum Mutat. 2005;25:322. doi: 10.1002/humu.9316.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu G, et al. Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 2005;7:R609–16. doi: 10.1186/bcr1262.PubMedCrossRefGoogle Scholar
  23. 23.
    Or YY, Hui AB, To KF, Lam CN, Lo KW. PIK3CA mutations in nasopharyngeal carcinoma. Int J Cancer. 2006;118:1065–7. doi: 10.1002/ijc.21444.PubMedCrossRefGoogle Scholar
  24. 24.
    Hildesheim A, Leoine PH. Etiology of nasophargngeal carcinoma: a review. Epidemiol Rev. 1993;15:466–85.PubMedGoogle Scholar
  25. 25.
    Poirier S, et al. Volatile nitrosamine levels and genotoxicity of food samples from high-risk areas for nasopharyngeal carcinoma before and after nitrosation. Int J Cancer. 1989;44:1088–94. doi: 10.1002/ijc.2910440625.PubMedCrossRefGoogle Scholar
  26. 26.
    Yu MC, Ho JH, Lai SH, Henderson BE. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res. 1986;46:956–61.PubMedGoogle Scholar
  27. 27.
    Teo P, et al. Significant prognosticators after primary radiotherapy in 903 nondisseminated nasopharyngeal carcinoma evaluated by computer tomography. Int J Radiat Oncol Biol Phys. 1996;36:291–304. doi: 10.1016/S0360-3016(96)00323-9.PubMedGoogle Scholar
  28. 28.
    Qin DX, et al. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer. 1988;61:1117–24. doi:10.1002/1097-0142(19880315)61:6<1117::AID-CNCR2820610611>3.0.CO;2-J.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee AW, et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys. 2005;61:1107–16. doi: 10.1016/j.ijrobp.2004.07.702.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Chu-Chung Chou
    • 1
    • 2
  • Ming-Jen Chou
    • 2
  • Chin-Yuan Tzen
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Emergency MedicineChanghua Christian HospitalChanghuaTaiwan
  2. 2.Institute of MedicineChung-Shan Medical UniversityTaichungTaiwan
  3. 3.Department of PathologyMackay Memorial HospitalTamshui, TaipeiTaiwan
  4. 4.Mackay Medicine, Nursing and Management CollegePeitou, TaipeiTaiwan
  5. 5.National Taipei College of NursingPeitou, TaipeiTaiwan

Personalised recommendations