Medical Oncology

, Volume 26, Issue 2, pp 170–177

Effects of a cyclooxygenase-1-selective inhibitor in a mouse model of ovarian cancer, administered alone or in combination with ibuprofen, a nonselective cyclooxygenase inhibitor

  • Wei Li
  • Ru-jun Xu
  • Zhen-yun Lin
  • Guang-chao Zhuo
  • Hong-he Zhang
Original Paper


Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to be potent inhibitors of the cyclooxygenases. The present study was designed to investigate the effects of a cyclooxygenase (COX)-1 inhibitor, SC-560, administered alone or in combination with ibuprofen on the growth inhibition of s.c. human ovarian SKOV-3 carcinoma and on angiogenesis. The effects of SC-560 and ibuprofen on tumor growth inhibition have been examined in mouse ovarian cancer models. Angiogenesis of both COX inhibitors was measured by reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. Prostaglandin E2 (PGE2) levels in tumor tissues of mice were also determined by ELISA. The inhibitory rates in SC-560 group alone and in combination with ibuprofen group were 21.21% and 41.55%, respectively. In combination therapy with SC-560 and ibuprofen, tumor volumes were significantly reduced compared with that of control group (P < 0.05). In treatment groups, both COX inhibitors significantly reduced intratumor PGE2 levels (all P < 0.01). Microvessel density (MVD) in tumor tissues were significantly decreased from 80.90 ± 5.14 in vehicle-treated to 40.70 ± 10.45 and 38.90 ± 8.41 in SC-560 group alone and combination ibuprofen therapy (all P < 0.01). Ibuprofen was similar to the cyclooxygenase-1-selective inhibitor SC-560 in its ability to suppress the values of MVD of tumor tissues. SC-560 administered alone or in combination with ibuprofen inhibited the COX-associated up-regulation of VEGF. These studies demonstrate synergism between two COX inhibitors and that antiangiogenic therapy can be used to inhibit ovarian cancer growth.


Ovarian cancer Cyclooxygenase SC-560 Ibuprofen Angiogenesis 


  1. 1.
    Ozols RF. Future directions in the treatment of ovarian cancer. Semin Oncol. 2002;29:32–42. doi:10.1053/sonc.2002.31594.PubMedCrossRefGoogle Scholar
  2. 2.
    NIH Consensus Development Panel on Ovarian Cancer. NIH consensus conference. Ovarian cancer. Screening, treatment and follow-up. JAMA. 1995;273:491–7. doi:10.1001/jama.273.6.491.CrossRefGoogle Scholar
  3. 3.
    Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003;4:431–6. doi:10.1016/S1535-6108(03)00310-6.PubMedCrossRefGoogle Scholar
  4. 4.
    Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi:10.1146/annurev.pharmtox.38.1.97.PubMedCrossRefGoogle Scholar
  5. 5.
    Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–1020. doi:10.1146/ Scholar
  6. 6.
    Seibert K, Masferrer J, Zhang Y, Leahy K, Hauser S, Gierse J. Expression and selective inhibition of constitutive and inducible forms of cyclooxygenase. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:125–7.PubMedGoogle Scholar
  7. 7.
    Smith CJ, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA. 1998;95:13313–8. doi:10.1073/pnas.95.22.13313.PubMedCrossRefGoogle Scholar
  8. 8.
    Sandler RS. Epidemiology and risk factors for colorectal cancer. Gastroenterol Clin North Am. 1996;25:717–35. doi:10.1016/S0889-8553(05)70271-5.PubMedCrossRefGoogle Scholar
  9. 9.
    Cramer DW, Harlow BL, Titus-Ernstoff L, Bohlke K, Welch WR, Greenberg ER. Over-the-counter analgesics and risk of ovarian cancer. Lancet. 1998;351:104–7. doi:10.1016/S0140-6736(97)08064-1.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris RE, Kasbari S, Farrar WB. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep. 1999;6:71–3.PubMedGoogle Scholar
  11. 11.
    Gupta RA, et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res. 2003;63:906–11.PubMedGoogle Scholar
  12. 12.
    Daikoku T, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res. 2006;66:2527–31. doi:10.1158/0008-5472.CAN-05-4063.PubMedCrossRefGoogle Scholar
  13. 13.
    Daikoku T, et al. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res. 2005;65:3735–44. doi:10.1158/0008-5472.CAN-04-3814.PubMedCrossRefGoogle Scholar
  14. 14.
    Reese J, Zhao X, Ma WG, Brown N, Maziasz TJ, Dey SK. Comparative analysis of pharmacologic and/or genetic disruption of cyclooxygenase-1 and cyclooxygenase-2 function in female reproduction in mice. Endocrinology. 2001;142:3198–206. doi:10.1210/en.142.7.3198.PubMedCrossRefGoogle Scholar
  15. 15.
    Williams CS, Watson AJM, Sheng H, Helou R, Sha J, DuBois RN. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res. 2000;60:6045–51.PubMedGoogle Scholar
  16. 16.
    Ovidiu C, et al. Masferrer cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res. 2002;62:5778–84.Google Scholar
  17. 17.
    Li W, Xu RJ, Jiang LH, Shi JF, Long X, Fan B. Expression of cyclooxygenase-2 and inducible nitric oxide synthase correlates with tumor angiogenesis in endometrial carcinoma. Med Oncol. 2005;22:63–70. doi:10.1385/MO:22:1:063.PubMedCrossRefGoogle Scholar
  18. 18.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84:1875–87. doi:10.1093/jnci/84.24.1875.PubMedCrossRefGoogle Scholar
  19. 19.
    Seki A, Kodama J, Miyagi Y, Kamimura S, Yoshinouchi M, Kudo T. Amplification of the mdm-2 gene and p53 abnormalities in uterine sarcomas. Int J Cancer. 1997;73:33–7. doi :10.1002/(SICI)1097-0215(19970926)73:1<33::AID-IJC6>3.0.CO;2-2.PubMedCrossRefGoogle Scholar
  20. 20.
    Min Y, et al. Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res. 2005;11:1618–28. doi:10.1158/1078-0432.CCR-04-1696.CrossRefGoogle Scholar
  21. 21.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–16. doi:10.1016/S0092-8674(00)81433-6.PubMedCrossRefGoogle Scholar
  22. 22.
    Kirsi N, Ari R, Martin M, Elizabeth S, Christian CH, Timothy HT. Transformation of immortalized ECV endothelial cells by cyclooxygenase-1 overexpression. J Biol Chem. 1997;272:21455–60. doi:10.1074/jbc.272.34.21455.CrossRefGoogle Scholar
  23. 23.
    Kitamura T, Itoh M, Noda T, Matsuura M, Wakabayashi K. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on intestinal. Int J Cancer. 2004;109:576–80. doi:10.1002/ijc.20012.PubMedCrossRefGoogle Scholar
  24. 24.
    Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S. Synergy between angiostatin and endostatin: inhibitor of ovarian cancer growth. Cancer Res. 2000;60:2190–6.PubMedGoogle Scholar
  25. 25.
    Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002;62:165–70.PubMedGoogle Scholar
  26. 26.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.PubMedGoogle Scholar
  27. 27.
    Feldman Al, Libutti SK. Progress in antiangiogenic gene therapy of cancer. Cancer. 2000;89:1181–94. doi :10.1002/1097-0142(20000915)89:6<1181::AID-CNCR1>3.0.CO;2-T.PubMedCrossRefGoogle Scholar
  28. 28.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6. doi:10.1093/jnci/82.1.4.PubMedCrossRefGoogle Scholar
  29. 29.
    Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic ovaries. Cancer Res. 1994;54:276–80.PubMedGoogle Scholar
  30. 30.
    Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90:447–54. doi:10.1093/jnci/90.6.447.PubMedCrossRefGoogle Scholar
  31. 31.
    Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB, Carson LF. Vascular endothelial growth factor expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 1997;121:169–75. doi:10.1016/S0304-3835(97)00350-9.PubMedCrossRefGoogle Scholar
  32. 32.
    Paley PJ, et al. Vascular endothelial growth factor expression in early stage 1 ovarian carcinomas. Cancer (Phila). 1997;80:98–106. doi :10.1002/(SICI)1097-0142(19970701)80:1<98::AID-CNCR13>3.0.CO;2-A.CrossRefGoogle Scholar
  33. 33.
    Olson TA, Mohanraj D, Roy S, Ramakrishnan S. Targeting the tumor vascular: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer. 1997;73:865–70. doi :10.1002/(SICI)1097-0215(19971210)73:6<865::AID-IJC17>3.0.CO;2-3.PubMedCrossRefGoogle Scholar
  34. 34.
    Nagy JA, Ellen SM, Kemp TH, Eleanor JM, Ann MD, Harold FD. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 1995;55:376–85.PubMedGoogle Scholar
  35. 35.
    Bryant CE, Appleton I, Mitchell JA. Vascular endothelial growth factor upregulates constitutive cyclooxygenase 1 in primary bovine and human endothelial cells. Life Sci. 1998;62:2195–201. doi:10.1016/S0024-3205(98)00197-0.PubMedCrossRefGoogle Scholar
  36. 36.
    Maldve RE, Kim Y, Muga SJ, Fischer SM. Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res. 2000;41:873–81.PubMedGoogle Scholar
  37. 37.
    Dubois RN, Abramson SB, Crofford L. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.PubMedGoogle Scholar
  38. 38.
    Yano T, Yano Y, Uchida M, Murakami A, Hagiwar K, Otani S, et al. The modulation effect of vitamin E on prostaglandin E2 level and ornithine decarboxylase activity at the promotion phase of lung tumorigenesis in mice. Biochem Pharmacol. 1997;53:1757–9. doi:10.1016/S0006-2952(96)00869-6.PubMedCrossRefGoogle Scholar
  39. 39.
    Hanahan D, Folkma J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64. doi:10.1016/S0092-8674(00)80108-7.PubMedCrossRefGoogle Scholar
  40. 40.
    Masferrer JL, Koki A, Seibert K. Cox-2 inhibitors, a new class of antiangiogenic agents. Ann NY Acad Sci. 1999;889:84–6. doi:10.1111/j.1749-6632.1999.tb08726.x.PubMedCrossRefGoogle Scholar
  41. 41.
    Masferrer JL, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–11.PubMedGoogle Scholar
  42. 42.
    Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat. 1995;36:127–37. doi:10.1007/BF00666035.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamamoto S, et al. Expression of vascular endothelial growth factor (VEGF) in epithelia ovarian neoplasms: correlation with clinicopathology and patient survival and analysis of serum VEGF levels. Br J Cancer. 1997;76:1221–7.PubMedGoogle Scholar
  44. 44.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.PubMedGoogle Scholar
  45. 45.
    Ferrara N. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 1999;237:1–30.PubMedGoogle Scholar
  46. 46.
    Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119:706–14. doi:10.1053/gast.2000.16510.PubMedCrossRefGoogle Scholar
  47. 47.
    Kitamura T, et al. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis. Carcinogenesis. 2002;23:1463–6. doi:10.1093/carcin/23.9.1463.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Wei Li
    • 1
  • Ru-jun Xu
    • 2
  • Zhen-yun Lin
    • 1
  • Guang-chao Zhuo
    • 3
  • Hong-he Zhang
    • 3
  1. 1.Department of Gynecology and ObstetricsNanjing Medical University of Hangzhou HospitalHangzhouChina
  2. 2.Department of PathologyNanjing Medical University of Hangzhou HospitalHangzhouChina
  3. 3.Department of LaboratoryNanjing Medical University of Hangzhou HospitalHangzhouChina

Personalised recommendations