Advertisement

Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease

  • Ari Robinson
  • Irit Lubitz
  • Dana Atrakchi-Baranes
  • Avital Licht-Murava
  • Pavel Katsel
  • Derek Leroith
  • Sigal Liraz-Zaltsman
  • Vahram Haroutunian
  • Michal Schnaider Beeri
Article
  • 19 Downloads

Abstract

Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15–30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.

Keywords

Insulin Exenatide Alzheimer’s disease T2D 

Notes

Funding Information

The research conducted was supported by NIH grants R01 AG034087, R01 AG051545 for Dr. Beeri, VA Merit grant 1I01BX002267 for Dr. Haroutunian, as well as the Leroy Schecter Foundation and the Bader Philanthropies for Dr. Beeri.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12031_2019_1257_MOESM1_ESM.docx (676 kb)
ESM 1 (DOCX 675 kb)

References

  1. Arrieta-Cruz I, Gutierrez-Juarez R (2016) The role of insulin resistance and glucose metabolism dysregulation in the development of Alzheimer s disease. Rev Investig Clin 68(2):53–58Google Scholar
  2. Artola A, Kamal A, Ramakers GM, Gardoni F, Di Luca M, Biessels GJ, Cattabeni F, Gispen WH (2002) Synaptic plasticity in the diabetic brain: advanced aging? Prog Brain Res 138:305–314CrossRefGoogle Scholar
  3. Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204Google Scholar
  4. Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, Purohit DP, Lesser G, Grossman HT, Haroutunian V (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71(10):750–757CrossRefGoogle Scholar
  5. Bond A (2006) Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Baylor Univ Med Cent Proc 19(3):281–284CrossRefGoogle Scholar
  6. Bosco D, Fava A, Plastino M, Montalcini T, Pujia A (2011) Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 15(9):1807–1821CrossRefGoogle Scholar
  7. Chen Y, Zhou K, Wang R, Liu Y, Kwak Y-D, Ma T, Thompson RC, Zhao Y, Smith L, Gasparini L, Luo Z, Xu H, Liao F-F (2009a) Antidiabetic drug metformin (Glucophage(R)) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A 106(10):3907–3912CrossRefGoogle Scholar
  8. Chen Y, Zhou K, Wang R, Liu Y, Kwak Y-D, Ma T, Thompson RC, Zhao Y, Smith L, Gasparini L, Luo Z, Xu H, Liao F-F (2009b) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci 106(10):3907–3912CrossRefGoogle Scholar
  9. Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719CrossRefGoogle Scholar
  10. Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28(6):809–822CrossRefGoogle Scholar
  11. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S (2017) Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis 57(4):1325–1334CrossRefGoogle Scholar
  12. Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, Tripathy D, Triplitt C, Fox P, Musi N, DeFronzo R, Gastaldelli A (2015) Exenatide regulates cerebral glucose metabolism in brain areas associated with glucose homeostasis and reward system. Diabetes 64(10):3406–3412CrossRefGoogle Scholar
  13. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63(7):2262–2272CrossRefGoogle Scholar
  14. De Felice FG, Vieira MNN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao W-Q, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976CrossRefGoogle Scholar
  15. van der Heide LP, Ramakers GM, Smidt MP (2006) Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 79(4):205–221CrossRefGoogle Scholar
  16. Diehl T, Mullins R, Kapogiannis D (2017) Insulin resistance in Alzheimer’s disease. Transl Res 183:26–40CrossRefGoogle Scholar
  17. Guo Z, Chen Y, Mao YF, Zheng T, Jiang Y, Yan Y, Yin X, Zhang B (2017) Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model. Sci Rep 7:45971CrossRefGoogle Scholar
  18. Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829CrossRefGoogle Scholar
  19. Hölscher C (2011) Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease. Biochem Soc Trans 39(4):891–897CrossRefGoogle Scholar
  20. Kamei N, Tanaka M, Choi H, Okada N, Ikeda T, Itokazu R, Takeda-Morishita M (2017) Effect of an enhanced nose-to-brain delivery of insulin on mild and progressive memory loss in the senescence-accelerated mouse. Mol Pharm 14(3):916–927Google Scholar
  21. Katsel P, Roussos P, Beeri MS, Gama-Sosa MA, Gandy S, Khan S, Haroutunian V (2018) Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer’s disease and normalized by treatment with anti-diabetic agents. PLoS One 13(11):e0206547CrossRefGoogle Scholar
  22. Kleinridders A, Ferris HA, Cai W, Kahn CR (2014) Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63(7):2232–2243CrossRefGoogle Scholar
  23. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C-X (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62CrossRefGoogle Scholar
  24. Lubitz I, Ricny J, Atrakchi-Baranes D, Shemesh C, Kravitz E, Liraz-Zaltsman S, Maksin-Matveev A, Cooper I, Leibowitz A, Uribarri J, Schmeidler J, Cai W, Kristofikova Z, Ripova D, LeRoith D, Schnaider-Beeri M (2016) High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Abeta deposition in an Alzheimer mouse model. Aging Cell 15(2):309–316CrossRefGoogle Scholar
  25. Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31(2):224–243CrossRefGoogle Scholar
  26. Morris JK, Burns JM (2012) Insulin: an emerging treatment for Alzheimer’s disease dementia? Curr Neurol Neurosci Rep 12(5):520–527CrossRefGoogle Scholar
  27. Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M (2017) Insulin signaling: an opportunistic target to minify the risk of Alzheimer’s disease. Psychoneuroendocrinology 83:159–171CrossRefGoogle Scholar
  28. Paul SK, Klein K, Maggs D, Best JH (2015) The association of the treatment with glucagon-like peptide-1 receptor agonist exenatide or insulin with cardiovascular outcomes in patients with type 2 diabetes: a retrospective observational study. Cardiovasc Diabetol 14(1):10CrossRefGoogle Scholar
  29. Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65CrossRefGoogle Scholar
  30. Ribaric S (2016) The rationale for insulin therapy in Alzheimer’s disease. Molecules 21:6CrossRefGoogle Scholar
  31. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254CrossRefGoogle Scholar
  32. Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MW (2006) Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 29(2):345–351CrossRefGoogle Scholar
  33. Salameh TS, Bullock KM, Hujoel IA, Niehoff ML, Wolden-Hanson T, Kim J, Morley JE, Farr SA, Banks WA (2015) Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition. J Alzheimers Dis 47(3):715–728CrossRefGoogle Scholar
  34. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101(9):3100–3105CrossRefGoogle Scholar
  35. Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14(7):1015–1022CrossRefGoogle Scholar
  36. Stanley M, Macauley SL, Holtzman DM (2016) Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 213(8):1375–1385CrossRefGoogle Scholar
  37. Talbot K, Wang H-Y, Kazi H, Han L-Y, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338CrossRefGoogle Scholar
  38. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ari Robinson
    • 1
  • Irit Lubitz
    • 1
  • Dana Atrakchi-Baranes
    • 1
  • Avital Licht-Murava
    • 2
  • Pavel Katsel
    • 3
  • Derek Leroith
    • 4
  • Sigal Liraz-Zaltsman
    • 1
  • Vahram Haroutunian
    • 3
  • Michal Schnaider Beeri
    • 1
    • 3
  1. 1.The Joseph Sagol Neuroscience Center Tel-hashomerRamat-GanIsrael
  2. 2.Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUSA
  3. 3.Department of PsychiatryThe Icahn School of Medicine at Mt SinaiNew YorkUSA
  4. 4.Department of MedicineIchan School of Medicine at Mt SinaiNew YorkUSA

Personalised recommendations