Genetic Alterations in Patients with Two Clinical Phenotypes of Multiple Sclerosis

  • Luciana Maria Feliciano
  • André Luiz Ventura Sávio
  • João Paulo de Castro Marcondes
  • Glenda Nicioli da Silva
  • Daisy Maria Fávero SalvadoriEmail author


The etiology of multiple sclerosis (MS) is still not known, but the interaction of genetic, immunological, and environmental factors seem to be involved. This study aimed to investigate genetic alterations and the vitamin D status in patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). A total of 53 patients (29 RRMS; 24 SPMS) and 25 healthy subjects were recruited to evaluate the micronucleated cell (MNC) frequency and nuclear abnormalities in the buccal mucosa, gene expression profiling in mononuclear cells, and plasmatic vitamin D concentration in the blood. Results showed a higher frequency of cells with karyorrhexis (SPMS) and lower frequencies of nuclear pyknosis (RRMS and SPMS) and karyolysis (SPMS) in patients with MS. Significant increase in the frequency of MNC was detected in the buccal mucosa of RRMS and SPMS patients. HIF1A, IL13, IL18, MYC, and TNF were differentially expressed in MS patients, and APP was overexpressed in cells of RRMS compared to SPMS patients. No relationship was observed between vitamin D level and the differentially expressed genes. In conclusion, the cytogenetic alterations in the buccal mucosa can be important indicators of genetic instability and degenerative processes in patients with MS. Furthermore, our data introduced novel biomarkers associated with the molecular pathogenesis of MS.


Multiple sclerosis Vitamin D Biomarkers Buccal mucosa Micronucleated cell 



The authors are grateful to Brenda Anfilo for technical assistance and to Dr. Fábio H. Fernandes for the scientific illustration.

Funding Information

This study was supported by the National Council for Scientific and Technological Development (CNPq-471312/2012-6)—Brazil.

Compliance with Ethical Standards

Ethics Statement

The Ethics Committee on Human Research of the Faculty of Medicine of Botucatu, (FMB)-UNESP approved the study protocol (CEP-4072-2011).


  1. Alcalde-Cabero E, Almazán-Isla J, García-Merino A, de Sá J, de Pedro-Cuesta J (2013) Incidence of multiple sclerosis among European Economic Area populations, 1985-2009: the framework for monitoring. BMC Neurol 13:58. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alharbi FM (2015) Update in vitamin D and multiple sclerosis. Neurosciences 20:329–335. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C (2010) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10:482–496. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertazza L, Mocellin S (2010) The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem 17:3337–3352CrossRefGoogle Scholar
  5. Bjørnevik K, Riise T, Casetta I et al (2014) Sun exposure and multiple sclerosis risk in Norway and Italy: the EnvIMS study. Mult Scler Houndmills Basingstoke Engl 20:1042–1049. CrossRefGoogle Scholar
  6. Bolognesi C, Knasmueller S, Nersesyan A, Thomas P, Fenech M (2013) The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay - an update and expanded photogallery. Mutat Res 753:100–113. CrossRefPubMedGoogle Scholar
  7. Chen Y-C, Chen S-D, Miao L et al (2012) Serum levels of interleukin (IL)-18, IL-23 and IL-17 in Chinese patients with multiple sclerosis. J Neuroimmunol 243:56–60. CrossRefPubMedGoogle Scholar
  8. Christophi GP, Christophi JA, Gruber RC et al (2011) Quantitative differences in the immunomodulatory effects of Rebif and Avonex in IFN-β 1a treated multiple sclerosis patients. J Neurol Sci 307:41–45. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Compston A, McDonald I, Noseworthy J et al (2005) McAlpine’s multiple sclerosis, 4th edn. Churchill Livingstone Elsevier, PhiladelphiaGoogle Scholar
  10. Coppedè F, Migliore L (2010) DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci 3:3–19CrossRefGoogle Scholar
  11. De Nuccio C, Bernardo A, Cruciani C et al (2015) Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: effects on mitochondrial functions and differentiation. Exp Neurol 271:506–514. CrossRefPubMedGoogle Scholar
  12. Dhillon VS, Thomas P, Fenech M (2004) Comparison of DNA damage and repair following radiation challenge in buccal cells and lymphocytes using single-cell gel electrophoresis. Int J Radiat Biol 80:517–528. CrossRefPubMedGoogle Scholar
  13. Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7:268–277. CrossRefPubMedGoogle Scholar
  14. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefGoogle Scholar
  15. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E, HUman MicronNucleus project (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75CrossRefGoogle Scholar
  16. Fernandes de Abreu DA, Eyles D, Féron F (2009) Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 34(Suppl 1):S265–S277. CrossRefPubMedGoogle Scholar
  17. Freiesleben S, Hecker M, Zettl UK, Fuellen G, Taher L (2016) Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms. Sci Rep 6:34512. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gehrmann J, Banati RB, Cuzner ML, Kreutzberg GW, Newcombe J (1995) Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia 15:141–151. CrossRefPubMedGoogle Scholar
  19. Gnanaprakasam JN, Wang R (2017) MYC in regulating immunity: metabolism and beyond. Genes 8:88. CrossRefPubMedCentralGoogle Scholar
  20. Hoel DG, Berwick M, de Gruijl FR, Holick MF (2016) The risks and benefits of sun exposure 2016. Dermatoendocrinol 8:e1248325. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang J, Xie Z-F (2012) Polymorphisms in the vitamin D receptor gene and multiple sclerosis risk: a meta-analysis of case-control studies. J Neurol Sci 313:79–85. CrossRefPubMedGoogle Scholar
  22. Huang W-X, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 10:482–487. CrossRefGoogle Scholar
  23. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. CrossRefGoogle Scholar
  24. Islam T, Gauderman WJ, Cozen W, Mack TM (2007) Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 69:381–388. CrossRefPubMedGoogle Scholar
  25. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci Off J Soc Neurosci 30:15811–15820. CrossRefGoogle Scholar
  26. Jorde R (2018) RCTS are the only appropriate way to demonstrate the role of vitamin D in health. J Steroid Biochem Mol Biol 177:10–14. CrossRefPubMedGoogle Scholar
  27. Kingwell E, Marriott JJ, Jetté N, Pringsheim T, Makhani N, Morrow SA, Fisk JD, Evans C, Béland SG, Kulaga S, Dykeman J, Wolfson C, Koch MW, Marrie RA (2013) Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol 13:128. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kodama S, Davis M, Faustman DL (2005) The therapeutic potential of tumor necrosis factor for autoimmune disease: a mechanistically based hypothesis. Cell Mol Life Sci CMLS 62:1850–1862. CrossRefPubMedGoogle Scholar
  29. Kulkarni A, Wilson DM (2008) The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 82:539–566. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Le Moan N, Baeten KM, Rafalski VA et al (2015) Hypoxia inducible factor-1αin astrocytes and/or myeloid cells is not required for the development of autoimmune demyelinating disease. eNeuro 2. CrossRefGoogle Scholar
  31. Losy J, Niezgoda A (2001) IL-18 in patients with multiple sclerosis. Acta Neurol Scand 104:171–173. CrossRefPubMedGoogle Scholar
  32. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–9113PubMedGoogle Scholar
  33. Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lund BT, Ashikian N, Ta HQ et al (2004) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 155:161–171. CrossRefPubMedGoogle Scholar
  35. Mansouri B, Asadollahi S, Heidari K et al (2014) Risk factors for increased multiple sclerosis susceptibility in the Iranian population. J Clin Neurosci Off J Neurosurg Soc Australas 21:2207–2211. CrossRefGoogle Scholar
  36. Marcus JF, Waubant EL (2013) Updates on clinically isolated syndrome and diagnostic criteria for multiple sclerosis. The Neurohospitalist 3:65–80. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain J Neurol 130:2800–2815. CrossRefGoogle Scholar
  38. Matías-Guiu JA, Oreja-Guevara C, Cabrera-Martín MN et al (2016) Amyloid proteins and their role in multiple sclerosis. Considerations in the use of amyloid-PET Imaging. Front Neurol 7.
  39. Migliore L, Coppedè F, Fenech M, Thomas P (2011) Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 26:85–92. CrossRefPubMedGoogle Scholar
  40. Milenkova M, Milanov I, Kmetska K, Deleva S, Popova L, Hadjidekova V, Groudeva V, Hadjidekova S, Domínguez I (2013) Chromosomal radiosensitivity in patients with multiple sclerosis. Mutat Res 749:3–8. CrossRefPubMedGoogle Scholar
  41. Minicucci EM, Ribeiro DA, de Camargo B, Costa MC, Ribeiro LR, Favero Salvadori DM (2008) DNA damage in lymphocytes and buccal mucosa cells of children with malignant tumours undergoing chemotherapy. Clin Exp Med 8:79–85. CrossRefPubMedGoogle Scholar
  42. Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 7:42–59. CrossRefGoogle Scholar
  43. MSIF (2013) Multiple Sclerosis International Federation. Atlas of MS in 2013. Mapping multiple sclerosis around the world. Modern Colour SolutionsGoogle Scholar
  44. Muñoz-Culla M, Irizar H, Otaegui D (2013) The genetics of multiple sclerosis: review of current and emerging candidates. Appl Clin Genet 6:63–73. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Musabak U, Demirkaya S, Genç G, Ilikci RS, Odabasi Z (2011) Serum adiponectin, TNF-α, IL-12p70, and IL-13 levels in multiple sclerosis and the effects of different therapy regimens. Neuroimmunomodulation 18:57–66. CrossRefPubMedGoogle Scholar
  46. Naghavi Gargari B, Behmanesh M, Shirvani Farsani Z, Pahlevan Kakhki M, Azimi AR (2015) Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. Int Immunopharmacol 28:414–419. CrossRefPubMedGoogle Scholar
  47. Nejati A, Shoja Z, Shahmahmoodi S, Tafakhori A, Mollaei-Kandelous Y, Rezaei F, Hamid KM, Mirshafiey A, Doosti R, Sahraian MA, Mahmoudi M, Shokri F, Emery V, Marashi SM (2016) EBV and vitamin D status in relapsing-remitting multiple sclerosis patients with a unique cytokine signature. Med Microbiol Immunol (Berl) 205:143–154. CrossRefGoogle Scholar
  48. Parnell GP, Booth DR (2017) The multiple sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities. Front Immunol 8:425. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peiravian F, Rajaian H, Samiei A et al (2016) Altered serum cytokine profiles in relapse phase of relapsing-remitting multiple sclerosis. Iran J Immunol IJI 13:186–196 IJIv13i3A4PubMedGoogle Scholar
  50. Pierrot-Deseilligny C (2009) Clinical implications of a possible role of vitamin D in multiple sclerosis. J Neurol 256:1468–1479. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pietroboni AM, di Cola FS, Scarioni M et al (2017) CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis. Multiple Sclerosis J 23:1085–1091. CrossRefGoogle Scholar
  52. Pike JW, Meyer MB (2012) The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Rheum Dis Clin North Am 38:13–27. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5:2502–2521. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ross CA, Truant R (2017) DNA repair: a unifying mechanism in neurodegeneration. Nature 541:34–35. CrossRefPubMedGoogle Scholar
  56. Rossi S, Motta C, Studer V et al (2014) Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler Houndmills Basingstoke Engl 20:304–312. CrossRefGoogle Scholar
  57. Sadeghi H, Taheri M, Sajjadi E et al (2017) VDR and CYP24A1 expression analysis in Iranian relapsing-remitting multiple sclerosis patients. Cell J Yakhteh:352–360.
  58. Scalfari A, Neuhaus A, Daumer M et al (2014) Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 85:67–75. CrossRefPubMedGoogle Scholar
  59. Shackelford DA (2006) DNA end joining activity is reduced in Alzheimer’s disease. Neurobiol Aging 27:596–605. CrossRefPubMedGoogle Scholar
  60. Simpson S, Taylor B, Blizzard L et al (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68:193–203. CrossRefPubMedGoogle Scholar
  61. Smolders J, Thewissen M, Theunissen R, Peelen E, Knippenberg S, Menheere P, Cohen Tervaert JW, Hupperts R, Damoiseaux J (2011) Vitamin D-related gene expression profiles in immune cells of patients with relapsing remitting multiple sclerosis. J Neuroimmunol 235:91–97. CrossRefPubMedGoogle Scholar
  62. Souberbielle J-C, Body J-J, Lappe JM, Plebani M, Shoenfeld Y, Wang TJ, Bischoff-Ferrari HA, Cavalier E, Ebeling PR, Fardellone P, Gandini S, Gruson D, Guérin AP, Heickendorff L, Hollis BW, Ish-Shalom S, Jean G, von Landenberg P, Largura A, Olsson T, Pierrot-Deseilligny C, Pilz S, Tincani A, Valcour A, Zittermann A (2010) Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: recommendations for clinical practice. Autoimmun Rev 9:709–715. CrossRefPubMedGoogle Scholar
  63. Stadelmann C, Ludwin S, Tabira T, Guseo A, Lucchinetti CF, Leel-Ossy L, Ordinario AT, Brück W, Lassmann H (2005) Tissue preconditioning may explain concentric lesions in Baló’s type of multiple sclerosis. Brain J Neurol 128:979–987. CrossRefGoogle Scholar
  64. Stampanoni MB, Mori F, Buttari F et al (2017) Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 128:1148–1157. CrossRefGoogle Scholar
  65. Swardfager W, Lanctôt K, Rothenburg L et al (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941. CrossRefPubMedGoogle Scholar
  66. Thomas P, Hecker J, Faunt J, Fenech M (2007) Buccal micronucleus cytome biomarkers may be associated with Alzheimer’s disease. Mutagenesis 22:371–379. CrossRefPubMedGoogle Scholar
  67. Thomas P, Holland N, Bolognesi C et al (2009) Buccal micronucleus cytome assay. Nat Protoc 4:825–837. CrossRefPubMedGoogle Scholar
  68. Weissman L, Jo D-G, Sørensen MM, de Souza-Pinto NC, Markesbery WR, Mattson MP, Bohr VA (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang Q, Pan W, Qian L (2017) Identification of the miRNA–mRNA regulatory network in multiple sclerosis. Neurol Res 39:142–151. CrossRefPubMedGoogle Scholar
  70. Yildiz M, Tettenborn B, Putzki N (2011) Vitamin D levels in Swiss multiple sclerosis patients. Swiss Med Wkly 141:w13192. CrossRefPubMedGoogle Scholar
  71. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain J Neurol 131:288–303. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of MedicineUNESP–São Paulo State UniversityBotucatuBrazil
  2. 2.Health Science Dept.UNINOVE–Nove de Julho UniversityBauruBrazil
  3. 3.CESMAC–University CenterMaceióBrazil
  4. 4.Faculty of PharmacyUFOP–Federal University of Ouro PretoOuro PretoBrazil

Personalised recommendations