Advertisement

Journal of Molecular Neuroscience

, Volume 69, Issue 4, pp 516–526 | Cite as

Plasma Exosomal miR-450b-5p as a Possible Biomarker and Therapeutic Target for Transient Ischaemic Attacks in Rats

  • XiuMei Luo
  • Wei Wang
  • DongBin Li
  • Chen Xu
  • Bao Liao
  • FengMei Li
  • Xia Zhou
  • Wu Qin
  • Jingli LiuEmail author
Article
  • 102 Downloads

Abstract

Transient ischaemic attack (TIA) and cerebral infarction are difficult to identify within the thrombolytic time window. Blood markers are efficient, economical and noninvasive and can be beneficial in the diagnosis of many diseases. Plasma exosomal biomarkers are rarely reported in TIA. Exosomal microRNAs (miRNAs) were extracted from plasma and cerebrospinal fluid after middle cerebral artery occlusion (MCAo) in rats (0 min, 5 min, 10 min, 2 h). Deep sequencing was used to detect exosomal miRNAs in rat plasma and confirm significant differentially expressed miRNAs. Polymerase chain reaction (PCR) was used to detect the differentially expressed miRNAs in plasma and cerebrospinal fluid. Exosomal miRNAs with the same expression trends in plasma and cerebrospinal fluid were selected, and bioinformatics analysis was then carried out. Finally, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was determined to assess the diagnostic accuracy of miRNAs for TIA in rats. First, high-throughput sequencing was used to detect the expression level of plasma exosome miRNA, and rno-miR-450b-5p with a decreasing expression level was screened. Second, the expression levels of exosomal miRNAs were verified in cerebrospinal fluid and plasma samples by PCR, and the results indicated that exosomal rno-miR-450b-5p was similarly expressed in cerebrospinal fluid and plasma. ROC analysis showed high AUC values for rno-miR-450b-5p (0.880) in the 10 min ischaemia rats compared with the control rats. Finally, bioinformatic analysis indicated that exosomal rno-miR-450b-5p may be involved in cerebral ischaemia. Plasma exosomal rno-miR-450b-5p has a high diagnostic value and may become a therapeutic target for rat TIA.

Keywords

Transient ischaemic attack Plasma/cerebrospinal fluid exosomes Droplet digital PCR Biomarker Rno-miR-450b-5p 

Notes

Funding

This study was supported by a grant from the National Natural Science Foundation of China (No. 81660354).

Compliance with Ethical Standards

Animals were treated in accordance with animal ethics standards throughout the animal experiment.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Consent for Publication

All authors agree to publish.

References

  1. Ajit SK (2012) Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors 12:3359–3369.  https://doi.org/10.3390/s120303359 CrossRefPubMedGoogle Scholar
  2. Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008.  https://doi.org/10.1073/pnas.1019055108 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.  https://doi.org/10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205.  https://doi.org/10.1146/annurev.cellbio.23.090506.123406 CrossRefPubMedGoogle Scholar
  5. Campomenosi P et al (2016) A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol 16:60.  https://doi.org/10.1186/s12896-016-0292-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369:293–298.  https://doi.org/10.1016/s0140-6736(07)60151-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Z, Wang K, Huang J, Zheng G, Lv Y, Luo N, Liang M, Huang L (2018) Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cell Physiol Biochem 45:397–405.  https://doi.org/10.1159/000486916 CrossRefPubMedGoogle Scholar
  8. Cheng L, Quek CY, Sun X, Bellingham SA, Hill AF (2013) The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies. Front Genet 4:150.  https://doi.org/10.3389/fgene.2013.00150 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higao CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111(41):14888–14893.  https://doi.org/10.1073/pnas.1408301111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dostie J (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. Rna 9:180–186.  https://doi.org/10.1261/rna.2141503 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Durukan Tolvanen A, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T (2017) TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter. Brain Res 1663:166–173.  https://doi.org/10.1016/j.brainres.2017.03.010 CrossRefPubMedGoogle Scholar
  12. Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, Hatsukami TS, Higashida RT, Johnston SC (2009a) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 40(6):2276–2293.  https://doi.org/10.1161/STROKEAHA.108.192218 CrossRefPubMedGoogle Scholar
  13. Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, Hatsukami TS, Higashida RT, Johnston SC, Kidwell CS, Lutsep HL, Miller E, Sacco RL, American Heart Association, American Stroke Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Interdisciplinary Council on Peripheral Vascular Disease (2009b) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 40:2276–2293.  https://doi.org/10.1161/STROKEAHA.108.192218 CrossRefPubMedGoogle Scholar
  14. Fan Y, Zhang C, Li T, Peng W, Yin J, Li X, Kong Y, Lan C, Wang R, Hu Z (2016) A new approach of short wave protection against middle cerebral artery occlusion/reperfusion injury via attenuation of Golgi apparatus stress by inhibition of downregulation of secretory pathway Ca(2+)-ATPase isoform 1 in rats. J Stroke Cerebrovasc Dis 25(7):1813–1822 doi: 10.1016/jCrossRefGoogle Scholar
  15. Ganzer CA, Barnes A, Uphold C, Jacobs AR (2016) Transient ischemic attack and cognitive impairment: a review. J Neurosci Nurs 48:322–327.  https://doi.org/10.1097/JNN.0000000000000236 CrossRefPubMedGoogle Scholar
  16. Krichevsky AM (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. Rna 9:1274–1281.  https://doi.org/10.1261/rna.5980303 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue specific microRNAs from mouse. Curr Biol 12(9):735–739CrossRefGoogle Scholar
  18. Li C, Pei F, Zhu X, Duan DD, Zeng C (2012) Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin Biochem 45:727–732.  https://doi.org/10.1016/j.clinbiochem.2012.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li M et al (2018) All-trans retinoic acid ameliorates the early experimental cerebral ischemia-reperfusion injury in rats by inhibiting the loss of the blood-brain barrier via the JNK/P38MAPK signaling pathway. Neurochem Res 43:1283–1296.  https://doi.org/10.1007/s11064-018-2545-4 CrossRefPubMedGoogle Scholar
  20. Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK (2018) MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci 22(11):3485–3492.  https://doi.org/10.26355/eurrev_201806_15175. CrossRefPubMedGoogle Scholar
  21. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF (2009) mi R-23a functions downstream of NFATc3 toregulate cardiac hypertrophy[J]. Proc Natl Acad Sci U S A 106(29):12103–12108CrossRefGoogle Scholar
  22. Ma Z et al (2016) MicroRNA-155 expression inversely correlates with pathologic stage of gastric cancer and it inhibits gastric cancer cell growth by targeting cyclin D1. J Cancer Res Clin Oncol 142:1201–1212.  https://doi.org/10.1007/s00432-016-2139-y CrossRefPubMedGoogle Scholar
  23. Mandriota SJ, Menoud PAa, Pepper MS (1996) Transforming growth factor b 1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells. J Biol Chem 271(19):11500–11505.  https://doi.org/10.1074/jbc.271.19.11500 CrossRefPubMedGoogle Scholar
  24. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68.  https://doi.org/10.1186/gb-2004-5-9-r68 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pedrono E, Durukan A, Strbian D, Marinkovic I, Shekhar S, Pitkonen M, Abo-Ramadan U, Tatlisumak T (2010) An optimized mouse model for transient ischemic attack. J Neuropathol Exp Neurol 69(2):188–195.  https://doi.org/10.1097/NEN.0b013e3181cd331c CrossRefPubMedGoogle Scholar
  26. Podlesniy P, Trullas R (2018) Biomarkers in cerebrospinal fluid: analysis of cell-free circulating mitochondrial DNA by digital PCR. Methods Mol Biol 1768:111–126.  https://doi.org/10.1007/978-1-4939-7778-9_7 CrossRefPubMedGoogle Scholar
  27. Racki N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10:42.  https://doi.org/10.1186/s13007-014-0042-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shao S et al (2017) Atorvastatin attenuates ischemia/reperfusion-induced hippocampal neurons injury via Akt-nNOS-JNK signaling pathway. Cell Mol Neurobiol 37:753–762.  https://doi.org/10.1007/s10571-016-0412-x CrossRefPubMedGoogle Scholar
  29. Shono K, Satomi J, Tada Y, Kanematsu Y, Yamamoto N, Izumi Y, Kaji R, Harada M, Nagahiro S (2017) Optimal timing of diffusion-weighted imaging to avoid false-negative findings in patients with transient ischemic attack. Stroke 48:1990–1992.  https://doi.org/10.1161/STROKEAHA.117.014576 CrossRefPubMedGoogle Scholar
  30. Sun MM et al (2014) TGF-beta1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma. Oncogene 33:2075–2086.  https://doi.org/10.1038/onc.2013.165 CrossRefPubMedGoogle Scholar
  31. Sun H, Zhao J, Zhong D, Li G (2017) Potential serum biomarkers and metabonomic profiling of serum in ischemic stroke patients using UPLC/Q-TOF MS/MS. PLoS One 12:e0189009.  https://doi.org/10.1371/journal.pone.0189009 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang H, Zhang XM, Tomiyoshi G, Nakamura R, Shinmen N, Kuroda H, Kimura R, Mine S, Kamitsukasa I, Wada T, Aotsuka A, Yoshida Y, Kobayashi E, Matsutani T, Iwadate Y, Sugimoto K, Mori M, Uzawa A, Muto M, Kuwabara S, Takemoto M, Kobayashi K, Kawamura H, Ishibashi R, Yokote K, Ohno M, Chen PM, Nishi E, Ono K, Kimura T, Machida T, Takizawa H, Kashiwado K, Shimada H, Ito M, Goto KI, Iwase K, Ashino H, Taira A, Arita E, Takiguchi M, Hiwasa T (2017) Association of serum levels of antibodies against MMP1, CBX1, and CBX5 with transient ischemic attack and cerebral infarction. Oncotarget. 9(5):5600–5613.  https://doi.org/10.18632/oncotarget.23789 eCollection 2018 Jan 19CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yagi Y, Ohkubo T, Kawaji H, Machida A, Miyata H, Goda S, Roy S, Hayashizaki Y, Suzuki H, Yokota T (2017) Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett 636:48–57.  https://doi.org/10.1016/j.neulet.2016.10.042 CrossRefPubMedGoogle Scholar
  34. Ye YP, Wu P, Gu CC, Deng DL, Jiao HL, Li TT, Wang SY, Wang YX, Xiao ZY, Wei WT, Chen YR, Qiu JF, Yang RW, Lin J, Liang L, Liao WT, Ding YQ (2016) miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget. 7(38):61312–61324.  https://doi.org/10.18632/oncotarget.11016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina

Personalised recommendations